## EE 313-01 Signals and Systems

Dr. Thomas Montoya's Fall 2024, 3-0 (3 credit hours)

EEP 254- MWF 2-2:50 pm

Examples

Chapter 1 Fundamental Concepts

Using MATLAB- CT_plot_example.m, DT_plot_example.m

Chapter 2 Time-Domain Models of Systems

Impulse response of a Type 1 Chebyshev HP filter- chap2_DT_impulse.pdf

Delayed impulse response of a Type 1 Chebyshev HP filter - chap2_DT_impulse_delay.pdf

Convolution response for a Type 1 Chebyshev HP filter - chap2_DT_convolution.pdf

Manual convolution of two DT signals - chap2_manual_DT_convolution.pdf

Array method convolution of two DT signals - chap2_array_DT_convolution.pdf

Convolution of two DT signals using MATLAB - chap2_matlab_DT_convolution.pdf

recursion m-file in display and usable (by MATLAB) formats- recur.pdf , recur.m

Manual response of Chebyshev filter to DT rectangular pulse by recursion- chap2_DT_recur_Chebyshev_HP_filter.pdf

Matlab response of Chebyshev filter to DT rectangular pulse by recursion- chap2_DT_recur_Chebyshev_HP_filter_matlab.pdf

Find CT ODE for a LP filter- chap2_CT_crossover_LP_filter.pdf

Euler’s numerical soln to 1st-order ODE by recursion- chap2_1st_ODE_euler_soln.pdf

Euler’s numerical soln to 2nd-order ODE by recursion- chap2_2nd_ODE_euler_soln.pdf

Find numerical soln (RK) to 1st-order ODE - chap2_1ODE_RK_soln.pdf

Find numerical soln (RK) to 2nd-order ODE - chap2_2ODE_RK_soln.pdf

Find analytic solution to 1st-order ODE - chap2_ODE_analytic_soln.pdf

Impulse response of series RL circuit - chap2_Series_RL_impulse_response.pdf

Plot analytic solution to CT convolution example - chap2_CT_convolution.pdf

Chapter 3 The Fourier Series and Fourier Transform

Sum of three sinusoids – chap3_sinesum.pdf

Trig. Fourier series example 1 (text example 3.2) – chap3_fourier_series1.pdf

Complex exp. Fourier series example 1 – chap3_fourier_series1_complex.pdf

Complex exp. Fourier series example 2 – chap3_fourier_series2_complex.pdf

Complex exp. Fourier transform rect. pulse – chap3_fourier_tran_rect_pulse.pdf

Fourier transform example 2 – chap3_fourier_tran_tsqr.pdf

Chapter 4 Fourier Analysis of Discrete-Time Signals

Discrete-Time Fourier transform (DTFT) odd signal example – DTFT_odd_signal.pdf

Discrete Fourier transform (DFT) MATLAB function m-file – dft.m

Inverse discrete Fourier transform (IDFT) MATLAB function m-file – idft.m

Discrete Fourier transform example – chap4_DFT_example1.pdf

Inverse discrete Fourier transform example – chap4_IDFT_example1.pdf

DFT & truncation example – chap4_DFT_example2.pdf

64 point FFT & DFT example – chap4_FFT_example1.pdf

Using FFT to approx. Fourier transform example – chap4_FFT_example2.pdf

MATLAB function m-file for approx. Fourier transform - contfft.m

Using FFT to perform convolution example – chap4_FFT_example3.pdf

Chapter 5 Fourier Analysis of Systems

Frequency Response of series LR circuit example – chap5_freq_resp1.pdf

Freq. Resp. of series LR ckt to rect. pulse train input– chap5_fourier_series_LR_circuit.pdf

Sampling & Interpolation Formula example – chap5_interpolation_sampling.pdf

Unit-pulse response of ideal LP filter – chap5_ideal_lowpass_unit_pulse_response.pdf

Causal LP filter example (2-point MA) – chap5_causal_lowpass_filter.pdf

DT Fourier analysis using DFT/FFT notes – DT_Fourier_analysis_using_DFT_or_FFT.pdf

DT Fourier analysis using FFT example – chap5_DT_Fourier_analysis_FFT_example.pdf

Chapter 7 The z-Transform and Discrete-Time Systems

Long division inverse z-Transform - chap7_inverse_z_transform_long_division.pdf

Roots.m example (polynomial root finder) - chap7_roots.pdf

Residue.m example (find residues & poles) - chap7_residue.pdf

Partial fraction inverse z-Transform #1- chap7_inverse_z_trans_partial_fractions1.pdf

Partial fraction inverse z-Transform #2- chap7_inverse_z_trans_partial_fractions2.pdf

System response using z-Transform  - chap7_z_transform_system_response.pdf

System response by block reduction  - chap7_system_Hz_block_reduction.pdf

System response by Mason’s Theorem 1  - chap7_system_Hz_Masons_Theorem.pdf

System response by Mason’s Theorem 2  - chap7_system_Hz_Masons_Theorem2.pdf