

Development of Low-Cost Multispectral Imager Conrad Farnsworth and Carly Schulz, advised by Dr. Charles Tolle

Introduction

Multispectral imagers are cameras that take images in multiple areas of the electromagnetic spectrum and then uses them to construct a composite image with data that cannot be seen by the human eye.

Fig. 1. Electromagnetic Spectrum

These systems typically cost tens of thousands of dollars; however, a recent release of a cost effective long wave infrared camera has made the construction of a cheaper multi-spectral imager for less than a thousand dollars possible. The body of the camera system was 3D printed for optimal functionality. The software was written in Java and Python to make it user accessible and multi-functional.

Objectives

Portable Low cost \succ User friendly > Expandable Well-Documented Multi-purposed hermal Origina Thermal Grayscale hermal False Col IR False Color Visual False Colo 劉/ふ

Fig. 2. Separated and False Color Images

REU Site: Bringing Us Together, Improving Communications and Lives This work was supported by the National Science Foundation under award EEC-1359476 and by a grant from the Hoffert Endowment within the South Dakota School of Mines & Technology Foundation.

Imager Design Requirements

Major Components:

- \succ Long wave IR camera (Flir[®])
- > Three filter-less CMOS cameras
- Raspberry Pi microcomputers
- Touch screen
- > ABS Plastic

Major Considerations:

- Cluster communication
- Image capture synchronization
- Camera symmetry
- > Minimal mathematical artifacts Portable power source
- ➢ Modular
- Filter selection
- > 3D Printability

5a.

Non-irrigate

Planting dat

and hybrid

corners

Software

Ul written in Java Easy to use interface Descriptive and powerful > Expandable functionality Controls reboot and restart operations in hardware

Applications Crop Monitoring: Medical Imaging:

> Automated battery management

Fig. 11. Multispectral Biofilm Fractal Analysis

Future Work

Conclusion

Prototype meets project objectives

	LWIR	8,000 nm
	IR	750 nm
	UV	290 nm
	Visual	400 nm

Coordinated imaging achieved

- > A user friendly GUI was created
- > Unit open to software/hardware upgrades
- Images stored for future analysis

Fig. 1: http://www.pion.cz/en/article/electromagnetic-spectrum Fig. 7: http://www.pioneer.com/home/site/us/agronomy/library/remote-sensing-imagery/ Fig. 8: http://biomedicaloptics.spiedigitallibrary.org/mobile/article.aspx?articleid=1816617 Fig. 9: http://www.resourcemappinggis.com/app_aerial.html Fig. 10: <u>https://www.youtube.com/watch?v=QNFARy0_c4w</u> Fig. 11: http://www.hpcnet.org/upload/attachments/428059 20090225074625.pdf

- 14,000 nm
- 1,000 nm
- 370 nm
- 750 nm

Image References