Recognize the importance of Textual Differences in Infrared and Ultraviolet Imagery Using Fractal Characteristics

Research Undergraduate: Jack A. Ryan (North Central College)
Faculty Advisors: Dr. Charles Tolle, Dr. Alfred Boysen & Dr. Thomas Montoya
Department of Electrical and Computer Engineering

ABSTRACT

This project utilized an algorithm written by Troy Thielen that is used to estimate the fractal dimension and lacunarity of gray-scale images. New ultraviolet and infrared images were taken throughout the project and analyzed using this algorithm. The fractal characteristics of these images were then analyzed to recognize textural differences within imagery, a useful method when attempting to recognize objects or locate targets. Differences between ultraviolet, infrared, and visual imagery were analyzed, and additional implications of the recognition of textural differences were explored.

OBJECTIVE

Use fractal characteristics (dimension and lacunarity) to analyze a set of ultraviolet and infrared images taken during the research project in order to evaluate the ability of fractal characteristics to aid in the recognition of textural differences in imagery.

PROCEDURES

1. Become familiar with the KDTREE algorithms by Troy Thielen to ensure accurate and proper usage (Table 1)
2. Take images in the ultraviolet (UV), infrared (IR) and visual spectrums (Figure 2)
3. Register the images using MATLAB (Figures 3,4)
 - This process takes two or more similar, yet differing images and applies a transformation to align the images
4. Apply the KDTREE algorithm to the UIR images to determine the fractal characteristics of the images

RESULTS

- A robust image registration method was developed that can be used for images taken in visual, ultraviolet and infrared wavelengths
- The K-d tree code that was to be used was not flexible enough to handle the multi-spectral input values, so for this reason (and limited time), the fractal analysis portion of the research was unable to be completed
- In some images in Figure 4, color differences between natural vs. manmade objects are noticeable before fractal analyses are even applied

CONCLUSION

Overall, despite the fact that the fractal analysis portion of this research project was unable to be completed, the image registration techniques employed are an important development to the future research of textural differences in multi-spectral imagery. These techniques are the primary product of this research, which will aid future research projects in this field.

FUTURE WORK

- Revise MAPPER to work with Intel’s new Cilkplus implementation of Cilk from MIT and include new registration code
- Develop an image registration technique that is independent of MATLAB for implementation with MAPPER
- Adjust KDTREE algorithms to be more flexible in the type of inputs that they take

ACKNOWLEDGEMENTS

This work was made possible by the National Science Foundation (NSF) SITE: Bringing Us Together: Improving Communications and Lives, DUE-1359476.
Special thanks to Troy Thielen and the students in the Controls Lab for their help and support throughout the process. Thanks also to Dr. Katherine Heller, Dr. David Schmitz and Dr. Marco Martinez for their recommendations.