Chapter 4 Noise, Broadband, and High Power Design Methods

4.1 Introduction

- Minimum noise figure and maximum power gain (Gp) are mutually exclusive

\[\downarrow \]

- Draw both constant noise figure circles and power gain circles on Smith Chart to help select reflection coefficients

- Broadband amplifiers usually have a design goal of flat gain over a range of frequencies. Useful techniques are compensated matching networks, negative feedback, or balance amplifiers

- For high power, the small-signal S parameters are not usable → large signal impedance or reflection coefficient data (vs. Pout or gain) needed.
4.2 Noise in Two-Port Networks

- A microwave amplifier has a small output, even with no input, called amplifier noise power.

- Total noise output = amplified input noise + amplifier noise

\[N \]

\[\text{Noisy Two-Port Network} \]

\[Z_L \]

- The resistor \(R \) at the input models the source of the input noise power due to thermal or Johnson noise.

\[V_{\text{rms}} = \sqrt{\text{noise power}} = \sqrt{4kTBR} \]

\[\text{where } k = \text{Boltzmann's Constant} \]
\[= 1.374 \times 10^{-23} \text{ J/K} \]

\[T = \text{resistor noise temperature in degrees Kelvin (°K)} \]

\[B = \text{Noise bandwidth} = f_H - f_L \]

- Since the noise depends on bandwidth rather than a specific frequency, it is called white noise.
The maximum power transfer theorem, the available noise power from \(R \) is
\[P_N = \frac{V_{n,\text{rms}}^2}{4R} = \frac{(\sqrt{4kTBR})^2}{4R} = kTB \]

This can be put in dBm (decibels referenced to 1mW) as
\[P_N (\text{dBm}) = 10 \log_{10}\left(\frac{P_N}{1 \times 10^{-3}}\right) \]
ex. Find the available noise power from a 50Ω resistor at 300 K over a 1 MHz bandwidth. Also, find the rms noise voltage.

\[V_{n,\text{rms}} = \sqrt{4kTBR} = \sqrt{4(1.374 \times 10^{-23})(300)(10^6)} \]

\[V_{n,\text{rms}} = 0.908 \mu V_{\text{rms}} \]

\[P_N = \frac{V_{n,\text{rms}}^2}{4R} = \frac{(0.908 \times 10^{-6})^2}{4(50)} = 4.122 \times 10^{-15} \text{ W} \]

\[= kTBR = (1.374 \times 10^{-23})(300)10^6 = 4.122 \times 10^{-15} \text{ W} \]

\[P_N (\text{dBm}) = 10 \log_{10} \left(\frac{4.122 \times 10^{-15}}{10^{-3}} \right) = -113.85 \text{ dBm} \]
Noise Figure \(F \) (unitless) is used to quantify the performance of a two-port (e.g., microwave amplifiers)

\[
F = \frac{\text{available noise power @ output}}{(\text{available noise power @ input}) G_A}
\]

\[
= \frac{P_{N_o}}{P_{N_i} G_A}
\]

From \(R \approx T_o = 290 K \)

Using \(G_A = \frac{P_{S_o}}{P_{S_i}} = \frac{\text{available signal power @ output}}{\text{available signal power @ input}} \)

\[
F = \frac{P_{S_i} / P_{N_i}}{P_{S_o} / P_{N_o}} = \frac{\text{SNR}_{in}}{\text{SNR}_{out}}
\]

We want to minimize by proper selection of \(R_s \)

What about multi-stage amplifiers?

E.g., 2-stage

\[
P_{N_0} = 6A_2 \left(G_{A1} P_{N_i} + P_{N_1} \right) + P_{N_2}
\]

\[
= G_{A1} G_{A2} P_{N_i} + G_{A2} P_{N_1} + P_{N_2}
\]
\[F_{\text{overall}} = F = \frac{P_i}{P_i G A_1 G A_2} = 1 + \frac{P_{i1}}{P_i G A_1} + \frac{P_{i2}}{P_i G A_1 G A_2} \]

Letting \(F_1 = 1 + \frac{P_{i1}}{P_i G A_1} \) \(\in \) Noise Figure for 1st amplifier

\(and \)

\(F_2 = 1 + \frac{P_{i2}}{P_i G A_2} \) \(\in \) Noise Figure for 2nd Amplifier

we can set

\[F = F_1 + \frac{F_2 - 1}{G A_1} = F_2 \]

\(\Rightarrow \) Noise from stage 2 is irrelevant if \(G A_1 \) is large!

What if we reversed the order of the amplifiers?

\[F_{21} = F_2 + \frac{F_1 - 1}{G A_2} \]

Usually, we want to choose the order so that \(F_{\text{overall}} \) is minimized.
Assuming \(F_{12} < F_{21} \) or

\[
\left(F_i + \frac{F_{21} - 1}{GA_i} \right) < \left(F_i + \frac{F_{21} - 1}{GA_2} \right),
\]

we can manipulate the expression to get

\[
\frac{F_i - 1}{1 - \frac{1}{GA_i}} < \frac{F_{21} - 1}{1 - \frac{1}{GA_2}}
\]

and define the noise measure \(M \)

\[
M = \frac{F - 1}{1 - \frac{1}{GA}}
\]

to get

\[
M_1 < M_2.
\]

\[\Rightarrow\] Put amplifier w/ lowest \(M \) first!

What about more than two amplifiers?

\[
F = F_i + \frac{F_{21} - 1}{GA_1} + \frac{F_{31} - 1}{GA_1 GA_2} + \frac{F_{41} - 1}{GA_1 GA_2 GA_3} + \ldots
\]

If all amplifiers are identical (same \(F \) + same \(GA \))

\[
F = 1 + \frac{F_i - 1}{1 - \frac{1}{GA_i}} = 1 + M_i
\]
4.2 cont.

Ex. Given amplifiers A and B described, determine the overall cascaded noise figures w/ A first (F_{AB}) and w/ B first (F_{BA}).

Amplifier A
- \(F_A = 3 \text{ dB} \)
- \(G_{A,A} = 10 \text{ dB} \)

Amplifier B
- \(F_B = 4 \text{ dB} \)
- \(G_{A,B} = 12 \text{ dB} \)

* Convert the noise figures and gain to be unitless.

\[
F_A = 10 \% = 1.9953 \quad F_B = 10 \% = 2.5119
\]
\[
G_{A,A} = 10 \% = 10 \quad G_{A,B} = 10 \% = 15.8489
\]

\[
M_A = \frac{F_A - 1}{1 - \frac{1}{G_{A,A}}} = \frac{1.9953 - 1}{1 - \frac{1}{10}} = 1.105847
\]
\[
M_B = \frac{F_B - 1}{1 - \frac{1}{G_{A,B}}} = \frac{2.5119 - 1}{1 - \frac{1}{15.8489}} = 1.6137
\]

\(M_A < M_B \)

\(\Rightarrow \) F_{AB} should be less than F_{BA} \(\leftarrow \)

\[
F_{AB} = F_A + \frac{F_B - 1}{G_{A,A}} = 1.9953 + \frac{2.5119 - 1}{10} = 2.14645
\]
\[
F_{BA} = F_B + \frac{F_A - 1}{G_{A,B}} = 2.5119 + \frac{1.9953 - 1}{15.8489} = 2.5747
\]
4.3 Constant Noise Figure Circles

For a microwave transistor meant to be used in applications where noise is a concern, we need (datasheet or measurement) the noise parameters:

- F_{min} = minimum/maximum noise figure.
- r_n = normalized (i.e., $\frac{r_n}{Z_0}$) equivalent noise resistance.
- Γ_{opt} = value of Γ_S (source reflection coefficient) which produces F_{min}.

How can the noise parameters be measured?

- F_{min} → use a noise figure meter to measure.
- Γ_{opt} → vary Γ_S until F_{min} reached, measure Γ_S with network analyzer.
- r_n → measure noise figure when $\Gamma_S = 0$, called $F_{\Gamma_S=0}$, then

$$r_n = \left(F_{\Gamma_S=0} - F_{\text{min}} \right) \frac{1 + |\Gamma_{\text{opt}}|^2}{4 |\Gamma_{\text{opt}}|^2}$$

Note: F_{min} is a function of the transistor operating point, e.g., I_C, frequency, ...
As shown in Appendix L, the noise figure of a two-port amplifier is expressed as:

\[F = F_{\text{min}} + \frac{r_n}{g_s} \left| y_s - y_{\text{opt}} \right|^2 \]

where \(y_s = g_s + j b_s \equiv \text{normalized source admittance} \)

\[y_s = \frac{1 - \Gamma_s}{1 + \Gamma_s} \quad \text{express in terms of source reflection coeff.} \]

\[y_{\text{opt}} = \frac{1 - \Gamma_{\text{opt}}}{1 + \Gamma_{\text{opt}}} \quad \text{normalized source admittance which yields } F_{\text{min}} \]

Substitute for \(y_s, g_s = \text{Re}(y_s), \) and \(y_{\text{opt}} \) in terms of \(\Gamma_s \) and \(\Gamma_{\text{opt}} \) in the noise figure equation to get

\[F = F_{\text{min}} + \frac{4r_n \left| y_s - y_{\text{opt}} \right|^2}{(1 - |\Gamma_s|^2)(1 + |\Gamma_{\text{opt}}|^2)} \]

This equation, for a given \(F = F_i \), can be arranged as

\[\frac{\left| y_s - y_{\text{opt}} \right|^2}{1 - |\Gamma_s|^2} = \frac{F_i - F_{\text{min}}}{4r_n} \left| 1 + \Gamma_{\text{opt}} \right|^2 = \text{constant} \]

Define noise figure parameter \(N_i \)

\[N_i = \frac{F_i - F_{\text{min}}}{4r_n} \left| 1 + \Gamma_{\text{opt}} \right|^2 \]
4.3 cont.

Then, \[\frac{|\Gamma_s \mp \Gamma_{\text{opt}}|^2}{1-|\Gamma_s|^2} = N_s \]

can be rearranged as
\[\left| \Gamma_s - \frac{\Gamma_{\text{opt}}}{1+N_s} \right|^2 = \frac{N_s^2 + N_s (1-|\Gamma_{\text{opt}}|^2)}{(1+N_s)^2} \]

which is the equation of a circle, on the \(\Gamma_s \) plane, of constant noise figure \(F_i \).

Center of \(F_i \) circle
\[C_{F_i} = \frac{\Gamma_{\text{opt}}}{1+N_s} \] (complex #)

Radius of \(F_i \) circle
\[R_{F_i} = \frac{1}{1+N_s} \sqrt{N_s^2 + N_s (1-|\Gamma_{\text{opt}}|^2)} \]

Notes:
1) \(\Gamma_s = \Gamma_{\text{opt}} \) results in \(N_s = 0 \) (\(F_i = F_{\text{min}} \))
and \(C_{F_i} = \Gamma_{\text{opt}} \) \(\Rightarrow \) \(R_{F_i} = 0 \)
2) Must choose \(F_i \geq F_{\text{min}} \)
3) all \(C_{F_i} \) along line of \(\times \Gamma_{\text{opt}} \)
Procedure for drawing constant noise figure circle

1) For a given transistor and operating conditions, obtain/measure the noise parameters: F_{min}, R_{opt}, and r_n.

2) Plot F_{min} at $P_s = P_{\text{opt}}$ on Γ_s Smith Chart and P_{opt} line.

3) Select $F_i > F_{\text{min}}$. Convert to unitless form ($F_i = 10^{F_i/10}$) if necessary, and calculate noise figure parameter N_i, C_{F_i}, and V_{F_i}.

4) Plot F_i circle on Γ_s Smith Chart.
In this example, we will map noise figure circles on the Γ_S plane based on a M-Pulse Microwave MP42141 silicon npn BJT low noise microwave transistor operating at 2 GHz with $V_{CE} = 10$ V and $I_C = 5$ mA.

Out of curiosity, is this transistor stable at 2 GHz?

\[
\Delta := S_{11}\cdot S_{22} - S_{12}\cdot S_{21} \\
|\Delta| = 0.19989 < 1, \text{ good}
\]

\[
K := \frac{1 - (|S_{11}|)^2 - (|S_{22}|)^2 + (|\Delta|)^2}{2 |S_{12}\cdot S_{21}|} \\
K = 1.3511 > 1, \text{ good}
\]

Stability Conditions ARE met at 2 GHz.

Let's calculate noise figure circles for $F = 3.5, 3.7, 4, \& 4.5$ dB.

\[
F_{3.5} := 10^{\frac{3.5}{10}} \\
F_{3.5} = 2.239
\]

\[
N_{3.5} := \frac{F_{3.5} - F}{4\cdot m}\left(1 + |\Gamma_{opt}|\right)^2 \\
N_{3.5} = 0.049
\]

\[
CF_{3.5} := \frac{\Gamma_{opt}}{1 + N_{3.5}} \\
|CF_{3.5}| = 0.47646 \\
\text{arg}(CF_{3.5}) \cdot \frac{180}{\pi} = 160 \text{ deg}
\]

\[
rF_{3.5} := \frac{1}{1 + N_{3.5}} \sqrt{N_{3.5}^2 + N_{3.5}\left[1 + (|\Gamma_{opt}|)^2\right]} \\
rF_{3.5} = 0.2415
\]
Plot the circles on a Γ_S plane / Γ_S Smith Chart.

\[
\begin{align*}
\text{F37} & := 10^{\frac{3.7}{10}} \quad \text{F37} = 2.344 \\
\text{N37} & := \frac{\text{F37} - \text{F}}{4 \cdot \text{r_n}} (|1 + \Gamma_{\text{opt}}|)^2 \quad \text{N37} = 0.152 \\
\text{CF37} & := \frac{\Gamma_{\text{opt}}}{1 + \text{N37}} \quad |\text{CF37}| = 0.4341 \quad \text{arg}(\text{CF37}) \cdot \frac{180}{\pi} = 160 \, \text{deg} \\
\text{rF37} & := \frac{1}{1 + \text{N37}} \sqrt{\text{N37}^2 + \text{N37} \cdot [1 + (|\Gamma_{\text{opt}}|)^2]} \quad \text{rF37} = 0.4004
\end{align*}
\]

\[
\begin{align*}
\text{F40} & := 10^{\frac{4}{10}} \quad \text{F40} = 2.512 \\
\text{N40} & := \frac{\text{F40} - \text{F}}{4 \cdot \text{r_n}} (|1 + \Gamma_{\text{opt}}|)^2 \quad \text{N40} = 0.314 \\
\text{CF40} & := \frac{\Gamma_{\text{opt}}}{1 + \text{N40}} \quad |\text{CF40}| = 0.3804 \quad \text{arg}(\text{CF40}) \cdot \frac{180}{\pi} = 160 \, \text{deg} \\
\text{rF40} & := \frac{1}{1 + \text{N40}} \sqrt{\text{N40}^2 + \text{N40} \cdot [1 + (|\Gamma_{\text{opt}}|)^2]} \quad \text{rF40} = 0.5335
\end{align*}
\]

\[
\begin{align*}
\text{F45} & := 10^{\frac{4.5}{10}} \quad \text{F45} = 2.818 \\
\text{N45} & := \frac{\text{F45} - \text{F}}{4 \cdot \text{r_n}} (|1 + \Gamma_{\text{opt}}|)^2 \quad \text{N45} = 0.612 \\
\text{CF45} & := \frac{\Gamma_{\text{opt}}}{1 + \text{N45}} \quad |\text{CF45}| = 0.3103 \quad \text{arg}(\text{CF45}) \cdot \frac{180}{\pi} = 160 \, \text{deg} \\
\text{rF45} & := \frac{1}{1 + \text{N45}} \sqrt{\text{N45}^2 + \text{N45} \cdot [1 + (|\Gamma_{\text{opt}}|)^2]} \quad \text{rF45} = 0.6621
\end{align*}
\]
Silicon Bipolar Low Noise Microwave Transistors

Features

- Low Intrinsic Noise Figure (2.3dB Typical @ 1.0 GHz)
- High Power Gain At 1.0 GHz – 18.0 dB Typical
- Gold Metalization
- Hermetic and Surface Mount Packages Available
- Can be Screened to JANTX, JANTXV Equivalent Levels
- ION Implanted arsenic Emitter for Consistent Performance

Description

This NPN Silicon transistor finds applications in low noise and medium power microwave amplifier circuitry. The MP42141 exhibits an excellent noise figure characteristic over the frequency range of .5 to 2 GHz. This transistor also features good high frequency current gain at medium current levels.

Applications

RF amplifiers and low level oscillators.

Case Styles

Micro-X
Absolute Maximum Ratings

MP42141 Series

<table>
<thead>
<tr>
<th>Parameter of Test</th>
<th>Symbol</th>
<th>Units</th>
<th>MP4214100 Chip</th>
<th>MP4214135 Micro-X</th>
<th>MP42141-509 TO-72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Base Voltage</td>
<td>V_{CB0}</td>
<td>27 V</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CEO}</td>
<td>20 V</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>V_{EBO}</td>
<td>1.5 V</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Collector Current</td>
<td>I_C</td>
<td>50 mA</td>
<td>400 mW</td>
<td>700 mW</td>
<td>700 mW</td>
</tr>
<tr>
<td>Junction Operating Temperature</td>
<td>T_J</td>
<td>200°C</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip or Ceramic Packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic Packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Power Dissipation at 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509 Case Style</td>
<td></td>
<td></td>
<td>400 mW</td>
<td>700 mW</td>
<td>700 mW</td>
</tr>
<tr>
<td>510 Case Style</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 Case Style</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Specifications @ 25°C

MP42141 Series

<table>
<thead>
<tr>
<th>Parameter of Test</th>
<th>Condition</th>
<th>Symbol</th>
<th>Units</th>
<th>MP4214100 Chip</th>
<th>MP4214135 Micro-X</th>
<th>MP42141-509 TO-72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Bandwidth Product</td>
<td>$V_{CE} = 10$ volts, $F_m = 1.0$ GHz, $I_C = 15$ mA</td>
<td>f_T</td>
<td>GHz</td>
<td>4.1 typ</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Insertion Power Gain</td>
<td>$V_{CE} = 15$ volts, $I_C = 15$ mA, $f = 1$ GHz, $f = 2$ GHz</td>
<td>$</td>
<td>S_{21E}</td>
<td>^2$</td>
<td>dB</td>
<td>13 typ 7 typ</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>$V_{CE} = 10$ volts, $I_C = 5$ mA, $f = 1$ GHz, $f = 2$ GHz</td>
<td>NF</td>
<td>dB</td>
<td>2.0 typ 3.4 typ</td>
<td>2.0 typ 3.4 typ</td>
<td>2.3 typ 3.6 typ</td>
</tr>
<tr>
<td>Unilateral Gain</td>
<td>$V_{CE} = 10$ volts, $I_C = 15$ mA, $f = 1$ GHz</td>
<td>GTU (max)</td>
<td>dB</td>
<td>17 typ</td>
<td>17 typ</td>
<td>14 typ</td>
</tr>
<tr>
<td>Power Out at 1 dB Compression Z=OPT</td>
<td>$V_{CE} = 10$ volts, $I_C = 10$ mA, $f = 1$ GHz</td>
<td>P_{1dB}</td>
<td>dBm</td>
<td>N/A</td>
<td>+7 typ</td>
<td>+4 typ</td>
</tr>
</tbody>
</table>

M-Pulse Microwave

576 Charcot Avenue, San Jose, California 95131

Tel (408) 432-1480 Fax (408)) 432-3440

Specification Subject to Change Without Notice
Electrical Specifications @ 25°C

MP42141 Series

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Cut-off Current</td>
<td>$V_{CE} = 10$ volts $I_E = 0 \mu A$</td>
<td>I_{CBO}</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Emitter Cut-off Current</td>
<td>$V_{BE} = 1$ volt $I_C = 0 \mu A$</td>
<td>I_{EBO}</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>Forward Current Gain</td>
<td>$V_{CE} = 10$ volts $I_C = 5$ mA</td>
<td>h_{FE}</td>
<td>20</td>
<td>125</td>
<td>250</td>
<td>—</td>
</tr>
<tr>
<td>Collector-Base Junction Capacitance</td>
<td>$V_{CB} = 15$ volts $f = 1$ MHz</td>
<td>C_{CB}</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>pF (35)</td>
</tr>
</tbody>
</table>

Typical Scattering Parameters

MP42141-511, $V_{CE} = 10$ Volts, $I_C = 5$ mA

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>S_{11E}</th>
<th>S_{21E}</th>
<th>S_{12E}</th>
<th>S_{22E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.626 -122.9</td>
<td>7.563 110.3</td>
<td>0.444 43.0</td>
<td>0.726 -34.3</td>
</tr>
<tr>
<td>500</td>
<td>0.618 -125.0</td>
<td>6.425 102.1</td>
<td>0.466 38.9</td>
<td>0.660 -32.9</td>
</tr>
<tr>
<td>800</td>
<td>0.577 -150.8</td>
<td>4.363 84.7</td>
<td>0.545 34.3</td>
<td>0.616 -38.6</td>
</tr>
<tr>
<td>1200</td>
<td>0.566 -170.1</td>
<td>3.073 67.7</td>
<td>0.626 32.9</td>
<td>0.577 -43.1</td>
</tr>
<tr>
<td>1600</td>
<td>0.661 -175.9</td>
<td>2.344 54.1</td>
<td>0.699 32.6</td>
<td>0.578 -50.4</td>
</tr>
<tr>
<td>2000</td>
<td>0.561 166.2</td>
<td>1.894 43.2</td>
<td>0.786 32.6</td>
<td>0.571 -63.6</td>
</tr>
<tr>
<td>2400</td>
<td>0.597 156.6</td>
<td>1.608 30.6</td>
<td>0.848 30.3</td>
<td>0.572 -70.8</td>
</tr>
<tr>
<td>2800</td>
<td>0.506 147.8</td>
<td>1.408 17.9</td>
<td>0.938 27.0</td>
<td>0.565 -81.4</td>
</tr>
<tr>
<td>3200</td>
<td>0.630 141.1</td>
<td>1.200 6.8</td>
<td>0.999 24.6</td>
<td>0.583 -90.7</td>
</tr>
<tr>
<td>3600</td>
<td>0.651 133.7</td>
<td>1.072 -4.6</td>
<td>1.060 21.7</td>
<td>0.597 -102.6</td>
</tr>
<tr>
<td>4000</td>
<td>0.643 132.9</td>
<td>0.933 -6.5</td>
<td>1.090 24.7</td>
<td>0.599 -109.2</td>
</tr>
<tr>
<td>4400</td>
<td>0.643 127.7</td>
<td>0.796 -18.4</td>
<td>1.112 21.4</td>
<td>0.637 -121.6</td>
</tr>
<tr>
<td>4800</td>
<td>0.656 122.7</td>
<td>0.702 -28.8</td>
<td>1.123 17.0</td>
<td>0.686 -135.2</td>
</tr>
<tr>
<td>5000</td>
<td>0.652 120.1</td>
<td>0.657 -34.1</td>
<td>1.123 14.0</td>
<td>0.693 -142.1</td>
</tr>
</tbody>
</table>

MP42141-511, $V_{CE} = 15$ Volts, $I_C = 15$ mA

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>S_{11E}</th>
<th>S_{21E}</th>
<th>S_{12E}</th>
<th>S_{22E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.537 -143.2</td>
<td>10.294 100.9</td>
<td>0.266 45.4</td>
<td>0.608 -31.2</td>
</tr>
<tr>
<td>500</td>
<td>0.547 -152.2</td>
<td>8.564 93.7</td>
<td>0.285 46.0</td>
<td>0.569 -29.3</td>
</tr>
<tr>
<td>800</td>
<td>0.548 -170.2</td>
<td>5.694 79.2</td>
<td>0.305 47.2</td>
<td>0.562 -33.5</td>
</tr>
<tr>
<td>1200</td>
<td>0.550 -176.9</td>
<td>3.867 65.9</td>
<td>0.356 48.7</td>
<td>0.539 -37.3</td>
</tr>
<tr>
<td>1600</td>
<td>0.562 166.4</td>
<td>2.946 53.6</td>
<td>0.356 48.0</td>
<td>0.539 -43.9</td>
</tr>
<tr>
<td>2000</td>
<td>0.579 158.8</td>
<td>2.383 43.8</td>
<td>0.367 47.2</td>
<td>0.539 -48.1</td>
</tr>
<tr>
<td>2400</td>
<td>0.601 150.8</td>
<td>2.010 32.1</td>
<td>0.374 43.4</td>
<td>0.537 -63.4</td>
</tr>
<tr>
<td>2800</td>
<td>0.609 143.3</td>
<td>1.755 20.0</td>
<td>0.383 39.7</td>
<td>0.530 -73.5</td>
</tr>
<tr>
<td>3200</td>
<td>0.643 137.0</td>
<td>1.505 10.4</td>
<td>0.391 36.6</td>
<td>0.553 -82.5</td>
</tr>
<tr>
<td>3600</td>
<td>0.657 130.1</td>
<td>1.338 -0</td>
<td>0.399 33.5</td>
<td>0.560 -94.1</td>
</tr>
<tr>
<td>4000</td>
<td>0.654 129.7</td>
<td>1.188 -1.4</td>
<td>0.404 36.2</td>
<td>0.565 -99.8</td>
</tr>
<tr>
<td>4400</td>
<td>0.648 124.6</td>
<td>1.017 -13.3</td>
<td>0.407 32.5</td>
<td>0.600 -112.7</td>
</tr>
<tr>
<td>4800</td>
<td>0.665 120.1</td>
<td>0.905 -23.4</td>
<td>0.420 27.5</td>
<td>0.648 -125.9</td>
</tr>
<tr>
<td>5000</td>
<td>0.650 117.2</td>
<td>0.849 -28.9</td>
<td>0.412 24.4</td>
<td>0.657 -133.0</td>
</tr>
</tbody>
</table>