Example- A UPW in air $\left(\varepsilon_{0}, \mu_{0}, z<0\right)$ is obliquely incident on a glass half-space $\left(6 \varepsilon_{0}, \mu_{0}, z>0\right)$ at an angle of 45°. The 800 MHz incident magnetic field is oriented in the y-direction and has a field strength of $0.4 \mathrm{~mA} / \mathrm{m}$ at $z=0$. Analyze and determine the various associated fields, power densities, and other related quantities.

$$
\begin{aligned}
& \eta_{1}=\eta_{0}=376.7303 \Omega \\
& \beta_{1}=\omega \sqrt{\mu_{0} \epsilon_{0}}=\frac{2 \pi 800 \times 10^{6}}{2.9979 \times 10^{8}} \\
& =16.76676 \frac{\mathrm{rad}}{\mathrm{~m}} \\
& \eta_{2}=\eta_{0} / \sqrt{\epsilon_{r_{2}}}=\frac{376.7303}{\sqrt{6}}=153.7995 \Omega \\
& \beta_{2}=\omega \sqrt{\mu_{0} 6 \epsilon_{0}}=2 \pi\left(800 \times 10^{6}\right) \sqrt{\left.4 \pi \times 10^{-7} / 6\right) 8.8541878 \times 10^{-12}} \\
& \beta_{2}=41.070007 \frac{\mathrm{rad}}{\mathrm{~m}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Per}(5.24 a), \frac{\theta_{r}}{}=\theta_{i}=45^{\circ} \\
& \operatorname{Per}(5-24 b), \quad \beta_{1} \sin \theta_{i}=\beta_{2} \sin \theta_{t} \\
& 16.76676 \sin 45^{\circ}=41.07 \sin \theta_{t} \\
& G \theta_{t}=\sin ^{-1}\left(\frac{16.76676 \sin 45^{\circ}}{41.07001}\right)=\sin ^{-1}(0.288675) \\
&=16.778655^{\circ} \Rightarrow \frac{\theta_{t}}{}=16.7787^{\circ} \\
& \operatorname{Ber}(5-24 c), \quad \Gamma_{11}^{b}=\frac{-\eta_{1} \cos \theta_{i}+\eta_{2} \cos \theta_{t}}{\eta_{1} \cos \theta_{i}+\eta_{2} \cos \theta_{t}}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{11}^{b}=\frac{-376.7303 \cos 45^{\circ}+153.7995 \cos 16.7787^{\circ}}{376.7303 \cos 45^{\circ}+153.7995 \cos / 6.7787^{\circ}}=\frac{-124.432}{413.64} \\
& \frac{\Gamma_{11}^{b}}{}=-0.28802 \\
& T_{11}^{b}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{1} \cos \theta_{i}+\eta_{2} \cos \theta_{t}}=\frac{2(153.7995) \cos 45^{\circ}}{413.64} \\
& T_{11}^{b}=0.52583
\end{aligned}
$$

$\operatorname{Per}(5-20 d)$,

$$
\begin{aligned}
H_{11}^{i}=\frac{E_{0}}{D_{1}} \Rightarrow E_{0} & =376.7303\left(0.4 \times 10^{-3}\right) \\
E_{0} & =0.150692 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
&(5-206) \quad \frac{\bar{H}_{11}^{i}}{}=\hat{a}_{y} 0.4 e^{-j / 6.767(0.707 x+0.707 z)}(\mathrm{mA}) \\
&(5-20 a) \bar{E}_{11}^{i}=\left(0.707 \hat{a}_{x}-0.707 \hat{a}_{z}\right) 0.1507 e^{-j 16.767(0.707 x+0.707 z)}(\mathrm{V} / \mathrm{m}) \\
&(\mathrm{s}-21 a) \bar{E}_{11}^{r}=\left(0.707 \hat{a}_{x}+0.707 \hat{a}_{z}\right) 0.1507(-0.288) e^{-j 110767(0.707 x-0.707 z)} \\
& \bar{E}_{11}^{r}=\left(0.707 \hat{a}_{x}+0.707 \hat{a}_{z}\right)(-43.402) e^{-16.76710 .707 x-0.707 z)}\left(\frac{\mathrm{mV}}{\mathrm{~m}}\right) \\
&(\mathrm{s}-216) \bar{H}_{11}^{r}=-\hat{a}_{y} \frac{-43.402 \times 10^{-3}}{376.7307} e^{-j 16.767(0.707 x-0.707 z)} \\
& \bar{H}_{11}^{r}\left.=+\hat{a}_{y} 0.1152 e^{-j 16.767(0.707 x-0.707 z)(\mathrm{mA})} \mathrm{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (s-22 a) \bar{E}_{11}^{t}=\left(\hat{a}_{x} \cos 16.779^{\circ}-\hat{a}_{z} \sin 16.779^{\circ}\right)(0.526)(0.1507) e^{-j 41.07\left(x \sin 16.9^{\circ}+z \cos / 1.9^{\circ}\right)} \\
& \bar{E}_{11}^{t}=\left(0.9574 \hat{a}_{x}-0.2887 \bar{a}_{z}\right)(79.268) e^{-j 41.07(0.2887 x+0.9574 z)}\left(\frac{\mathrm{mV}}{\mathrm{~m})}\right. \\
& \text { (5-22b) } \bar{H}_{11}^{t}=\hat{a}_{y} \frac{0.52583(0.150692)}{153.7995} e^{-j 41.07(0.2887 x+0.9574 z)} \\
& \bar{H}_{11}^{t}=\hat{a}_{y} 0.5152 e^{-41.07(0.2887 x+0.9574 z)}(\mathrm{mg}) \\
& (S-26 a) \quad \Gamma_{11}(z)=\Gamma_{11}^{6} e^{j 2 \beta, z \cos \theta_{k}} \\
& =-0.28802 e^{j 2(16,76676) \cos 45^{\circ} z} \\
& \Gamma_{11}(z)=-0.28802^{j 23.7118 z} \quad z \leq 0 \\
& \left.(s-26) \quad \bar{E}_{\prime \prime}^{\prime}=\hat{a}_{x} \cos 45 \% .1507\right) e^{-j / 6.767(0.707 x+0.707 z)}\left[1+T_{11}(z)\right] \\
& \left.-\hat{a}_{z} \sin 45 \% .1507\right) e^{-j / 6.767(0.707 x+0.707 z)}\left[1-\Gamma_{11}(z)\right] \\
& E_{11}^{\prime}=\hat{a}_{x} 0.10656 e^{-j 16.767(0.707 x+0.707 z)}\left[1+\Gamma_{11}(z)\right] \\
& -\hat{a}_{z} 0.10656 e^{-j 16.767(0.707 x+0.707 z)}\left[1-\Gamma_{11}(z)\right](\mathrm{V} / \mathrm{m}) \\
& z \leq 0
\end{aligned}
$$

