

EE 483L/583L Antennas for Wireless Communications

Spring 2026 Laboratory 1- Antenna Pattern Plotting

Background

For this lab, you will calculate some quantities and plot some antenna patterns for a small loop antenna.

Project

A small, thin-wire, circular loop antenna in free space, centered on origin on the x - y plane, has far-field electric and magnetic fields given by

$$\bar{E} = \hat{a}_\phi \eta_0 \frac{\pi S I_0 \sin(\theta)}{\lambda^2} \frac{e^{-jkr}}{r} \quad \text{and} \quad \bar{H} = -\hat{a}_\theta \frac{\pi S I_0 \sin(\theta)}{\lambda^2} \frac{e^{-jkr}}{r}$$

where S is the surface area of the loop and I_0 is the input current. Assuming the loop is lossless, has an input current of $20\angle0^\circ$ A, and a radius of $a = \lambda/50$:

- 1) Find functions for \bar{E} (V/m) and \bar{H} (A/m) in terms of k , r , and θ .
- 2) At $r = 10$ m, find a function for the magnitude of the electric field $|\bar{E}|$. Also, find maximum $|\bar{E}|$ (V/m and dBVm).
- 3) Plot polar radiation patterns for $|\bar{E}|$ (V/m and dBVm w/ 10 to -20 dBVm scale) at $r = 10$ m.
- 4) Plot normalized polar radiation patterns for $|\bar{E}|$ (unitless and dB w/ 0 to -30 dB scale).
- 5) Find function for the time-average Poynting vector \bar{W}_{rad} (W/m²). Find time-average power P_{loop} radiated by this antenna.
- 6) Find function for the radiation intensity U_{loop} of the antenna. Also, find maximum radiation intensity $U_{\text{loop},\text{max}}$ (W/Sr and dBW).
- 7) Plot polar radiation patterns for U_{loop} (W/Sr and dBW w/ 5 to -25 dBW scale).
- 8) Plot normalized polar radiation patterns for the U_{loop} (unitless and dB w/ 0 to -30 dB scale).
- 9) Find function for the directivity D_{loop} of the antenna. Also, find maximum directivity $D_{\text{loop},\text{max}}$ (unitless and dBi).
- 10) Plot polar radiation patterns for the D_{loop} (unitless and dBi w/ 5 to -25 dB scale).
- 11) Plot normalized polar radiation patterns for D_{loop} (unitless and dB w/ 0 to -30 dB scale).

Conclusions

Compare and discuss the different radiation patterns. Which are similar? Which are identical?

Short report is due Monday, February 2, 2026 at class.

Notes: Put all pairs of like quantity plots on a single page. All polar radiation patterns are in the elevation plane coinciding with x - z plane, i.e., plot with respect to θ when $\phi = 0$ and 180° (want plots to be symmetric about $\theta = 0$ or z -axis). Orient all polar plots to **put $\theta = 0$ at top**.

Hints:

- Consider what the MATLAB command ‘view([90 -90])’ does to a polar() plot.
- $U(\text{dBW}) = 10 \log_{10} [U / (1 \text{ W})]$. $|\bar{E}|(\text{dBVm}) = 20 \log_{10} [|\bar{E}| / (1 \text{ V/m})]$.
- To normalize a quantity not in dB, find maximum value. Then, divide all values of quantity by maximum, e.g., $Q_{\text{norm}}(x) = Q(x) / Q_{\text{max}}$. Therefore, $Q_{\text{norm}}(x) \leq 1$ (unitless) & $Q_{\text{norm}}(x) (\text{dB}) \leq 0$.