EE 483L/583L Antennas for Wireless Communications Spring 2025 Laboratory 1- Antenna Pattern Plotting

Background

For this lab, you will calculate some quantities and plot some antenna patterns for a small loop antenna.

Project

A small, thin-wire, circular loop antenna in free space, centered on origin on the x-y plane, has far-field electric and magnetic fields given by

$$\overline{E} = \hat{a}_{\phi} \eta_0 \frac{\pi S I_0 \sin(\theta)}{\lambda^2} \frac{e^{-jkr}}{r} \text{ and } \overline{H} = -\hat{a}_{\theta} \frac{\pi S I_0 \sin(\theta)}{\lambda^2} \frac{e^{-jkr}}{r}$$

where *S* is the surface area of the loop and I_0 is the input current. Assuming the loop is lossless, has an input current of $100 \ge 0^\circ$ A, and a radius of $a = \lambda/70$:

- 1) Find functions for \overline{E} (V/m) and \overline{H} (A/m) in terms of k, r, and θ .
- 2) At r = 25 m, find a function for the magnitude of the electric field $|\overline{E}|$. Also, find maximum $|\overline{E}|$ (V/m and dBVm).
- 3) Plot polar radiation patterns for $|\overline{E}|$ (V/m and dBVm w/ 10 to -20 dBVm scale) at r = 25 m.
- 4) Plot <u>normalized</u> polar radiation patterns for $|\overline{E}|$ (unitless <u>and</u> dB w/ 0 to -30 dB scale).
- 5) Find function for the time-average Poynting vector \overline{W}_{rad} (W/m²). Find time-average power P_{loop} radiated by this antenna.
- 6) Find function for the radiation intensity U_{loop} of the antenna. Also, find maximum radiation intensity $U_{\text{loop,max}}$ (W/Sr and dBW).
- 7) Plot polar radiation patterns for U_{loop} (W/Sr and dBW w/ 10 to -20 dBW scale).
- 8) Plot <u>normalized</u> polar radiation patterns for the U_{loop} (unitless <u>and</u> dB w/ 0 to -30 dB scale).
- 9) Find function for the directivity D_{loop} of the antenna. Also, find maximum directivity $D_{\text{loop,max}}$ (unitless <u>and</u> dBi).
- 10) Plot polar radiation patterns for the D_{loop} (unitless and dBi w/ 10 to -20 dB scale).
- 11) Plot **<u>normalized</u>** polar radiation patterns for D_{loop} (unitless <u>and</u> dB w/ 0 to -30 dB scale).

Conclusions

Compare and discuss the different radiation patterns. Which are similar? Which are identical?

Due Monday, February 3, 2025 at class.

Note: Put all pairs of like quantity plots on a single page. All polar radiation patterns are in the elevation plane coinciding with x-z plane, i.e., plot with respect to θ when $\phi = 0$ and 180° (want plots to be symmetric about $\theta = 0/z$ -axis). Orient all polar plots to put $\theta = 0$ at top.

Hints:

- ➤ Consider what the MATLAB command 'view([90 -90])' does to a polar() plot.
- > $U(dBW) = 10 \log_{10} [U/(1W)]$. $|E|(dBVm) = 20 \log_{10} [|E|/(1V/m)]$.
- To normalize a quantity not in dB, find maximum value. Then, divide all values of quantity by the maximum, e.g., $Q_{\text{norm}}(x) = Q(x)/Q_{\text{max}}$. Therefore, $Q_{\text{norm}}(x) \le 1$ (unitless) & $Q_{\text{norm}}(x)$ (dB) ≤ 0 .