EE 483/583 Antennas for Wireless Communications (Spring 2025) Homework 2 Friday, January 31, 2025

- 1) 2.33ad Assume $E_y = 1$ V/m. Also, in each case, write-out a time-domain equation for the electric field, plot the polarization ellipse with wave propagating into page, annotate RH/LH instead of CW/CCW, and find tilt angle with respect to the + \mathcal{E}_y -axis.
- 2) 2.37 For plots, E₀ = E_a = 1 V/m. For part (a), write-out a time-domain equation for the electric field, plot the polarization ellipse w/ wave propagating out of page, annotate RH/LH, and find tilt angle with respect to the +E_y-axis. For part (b), write-out a time-domain equation for the electric field, plot the polarization ellipse w/ wave propagating into page, annotate RH/LH, and find tilt angle with respect to the +E_y-axis. For part (b), write-out a time-domain equation for the electric field, plot the polarization ellipse w/ wave propagating into page, annotate RH/LH, and find tilt angle with respect to the +E_y-axis. For part (c), also find p̂_w & p̂_a.
- 3) 2.53 Assume loss resistance is 2 Ω . Hint: Look at Chapter 4 section on $\lambda/2$ dipoles.
- 4) 2.53 Assume loss resistance is 2 Ω and the generator has a lossless 50 Ω transmission line of length 1.65 λ connecting it to the antenna.
- 5) 2.57 Change dipole length to $\lambda/50$, radius to $\lambda/275$, and wire to tungsten ($\sigma_w = 1.8 \times 10^7 \text{ S/m}$). Hint: Look at Chapter 4 section on infinitesimal dipoles.
- 6) EE 583 only:

A plane wave $\overline{\mathcal{E}} = \hat{a}_x 80\cos(\omega t + 20^\circ - \beta y) + \hat{a}_z 60\cos(\omega t - 40^\circ - \beta y)$ (V/m) is incident on an infinitesimal dipole located at the origin and oriented along the *z*axis. What direction is the plane wave traveling? Sketch the polarization ellipse of the plane wave w/ wave propagating into page and annotate with its polarization. What are $\hat{\rho}_w$, $\hat{\rho}_a$, and the PLF when $\theta = 90^\circ$ and $\phi = 30^\circ$? [Hints: Look at Chapter 4 and remember how to convert from spherical to Cartesian unit vectors.]

Due Wednesday, February 5, 2025