EE 483/583 Antennas for Wireless Communications Quiz \#9 (Spring 2024)

Name KEY _
Instructions: Open book \& notes. Place answers in indicated spaces \& show all work for credit. $c=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Longing for entertainment in the student lounge, a loopy EE student makes a circular (3.75" diameter) antenna out of Kester solder $\left(\varepsilon_{0}, \mu_{0}, \sigma=6.4 \times 10^{6} \mathrm{~S} / \mathrm{m}, 1 \mathrm{~mm}\right.$ diameter). The antenna is located in free space using a stylish antenna mast mounted on a baseball hat (ME senior project). Due to abysmal taste (or possible brain damage), the student is listening to " 93.9 The Mix". Determine if this loop antenna is electrically small, "smallish" w/ constant current, or large. Why? Find the free space wavenumber. Also, find the antenna circumference in terms of wavelengths C / λ, radiation resistance, loss resistance, and radiation efficiency (\%).
solder/wire diameter $2 b=1 \mathrm{~mm} \Rightarrow$ wire radius $b=0.5 \mathrm{~mm}=0.0005 \mathrm{~m}$
loop diameter $2 a=3.75(0.0254)=0.09525 \mathrm{~m} \Rightarrow$ loop radius $a=47.625 \mathrm{~mm}=0.047625 \mathrm{~m}$
Wavelength $\lambda=u / f=2.9979 \times 10^{8} / 93.9 \times 10^{6} \Rightarrow \lambda=3.19265 \mathrm{~m}$
Wavenumber $k=2 \pi / \lambda=2 \pi / 3.19265 \quad \Rightarrow \quad k=\mathbf{1 . 9 6 8 0 1 5} \mathbf{r a d} / \mathbf{m}$
Loop circumference $C=2 \pi a=2 \pi(0.047625 \mathrm{~m}) \Rightarrow C=0.299237 \mathrm{~m}$
$C / \lambda=k a=0.299237 / 3.19265=\underline{\mathbf{0 . 0 9 3 7 2 7}}<0.1 \ll 1 \Rightarrow \underline{\text { electrically small loop }}$
Radiation resistance, per $(5-24), R_{r}=\eta(\pi / 6)(k a)^{4}=376.7303(\pi / 6)[0.093727]^{4}$

$$
\Rightarrow \quad R_{r}=0.015222 \Omega=15.222 \mathrm{~m} \Omega
$$

Loss resistance, per (2-90b),

$$
\begin{aligned}
R_{L} & =\frac{\ell}{P} \sqrt{\frac{\omega \mu_{0}}{2 \sigma}}=\frac{2 \pi a}{2 \pi b} \sqrt{\frac{\omega \mu_{0}}{2 \sigma}}=\frac{a}{b} \sqrt{\frac{\omega \mu_{0}}{2 \sigma}} \\
& =\frac{47.625}{0.5} \sqrt{\frac{2 \pi\left(93.9 \bullet 10^{6}\right) 4 \pi \bullet 10^{-7}}{2\left(6.4 \bullet 10^{6}\right)}} \Rightarrow \underline{\boldsymbol{R}_{L}=\mathbf{0 . 7 2 4 9 1 6 \Omega = 7 2 4 . 9 1 6 \mathrm { m } \Omega}}
\end{aligned}
$$

Radiation efficiency (\%), per (2-90)

$$
e_{c d}=\left(\frac{R_{r}}{R_{L}+R_{r}}\right) 100 \%=\left(\frac{15.222}{724.916+15.222}\right) 100 \% \Rightarrow \underline{\boldsymbol{e}_{c d}}=\mathbf{2 . 0 5 6 6 9} \% \mathbf{o}
$$

Loop is electrically: small, 'smallish' w/ constant current, or large. (Circle one)
Why? $\underline{C / \lambda=k a=0.093727<0.1 \ll 1} \quad k=\underline{1.968 \mathrm{rad} / \mathrm{m}} \quad C / \lambda=\underline{0.093727}$

