Tuesday, March 26, 2024 1/2

EE 483/583 Antennas for Wireless Communications Quiz #8 (Spring 2024)

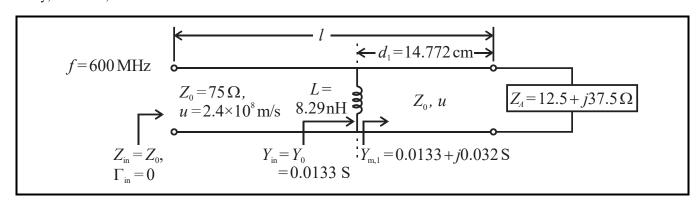
Name <u>KEY</u>

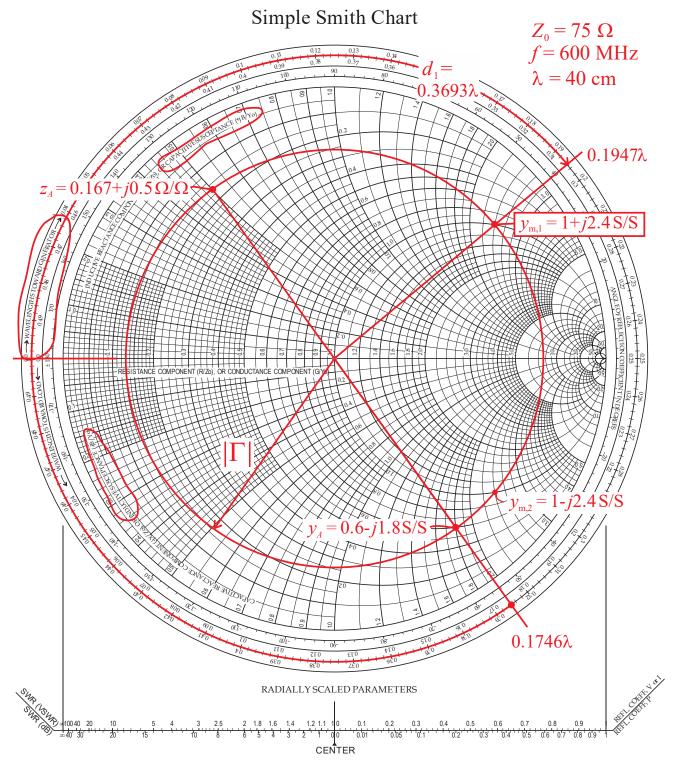
Instructions: Open book and notes. Place answers in indicated spaces and show & explain all work for credit.

Match a Yagi-Uda antenna ($Z_A = 12.5 + j37.5 \Omega$) operating at 600 MHz to a 75 Ω feeding transmission line ($u = 2.4 \times 10^8 \,\mathrm{m/s}$) using a discrete <u>inductor</u> connected in **parallel** and placed as close to the antenna as possible. As part of the solution process, find the normalized antenna admittance y_A and impedance z_A , normalized match point admittances (<u>circle match point used</u>), wavelength λ on transmission line, distance d from the antenna to the match point ($x.xxx\lambda \& cm$), inductor admittance Y_L (not normalized), and inductor value d. Fully label the Smith chart and draw a fully-labeled sketch of the final design in box provided [all dimensions in <u>cm</u>].

ightharpoonup The wavelength is $\lambda = u/f = 2.4 \times 10^8/600 \times 10^6 = 0.4 \,\mathrm{m}$ $\Rightarrow \frac{\lambda = 40 \,\mathrm{cm}}{}$.

Steps


- 1) Calculate normalized impedance $z_A = Z_A/Z_0 = (12.5 + j37.5)/75 \Rightarrow \underline{z_A = 0.167 + j0.5 \Omega/\Omega}$ and plot on **Smith chart**.
- 2) Draw circle, centered on Smith chart, through z_A point. This circle of constant $|\Gamma|$ includes the locus of all possible z_{in} (and y_{in}) along the transmission line with this load.
- 3) Go $\lambda/4$ (180°) around the circle of constant $|\Gamma|$ from z_A point to $y_A = 1/z_A = 1/(0.167 + j 0.5)$ point and plot $\Rightarrow y_A = 0.6 j 1.8 \text{ S/S}$.
- 4) Note, the two match points are $\underline{y_{m,i}} = 1 \pm \underline{j2.4}$ S/S. In order to use a discrete inductor for matching, select $\underline{y_{m1}} = 1 + \underline{j2.4}$ S/S as it has a capacitive susceptance. Note, $Y_{m1} = y_{m1}/Z_0 = (1 + \underline{j2.4})/75 = 0.01333 + \underline{j0.032}$ S.
- 5) Find distance d_1 from y_A to y_{m1} using scales on Smith chart, $\underline{d_1/\lambda} = 0.1746 + 0.1947 = 0.3693$ or, in centimeters, $d_1 = 0.3693(40) \Rightarrow \underline{d_1} = 14.772$ cm.
- 6) At d_1 , add a discrete inductor in parallel with susceptance $\underline{Y_L = -j0.032 \text{ S}} = -j/\omega L$. Solving for L yields $L = 1/[2\pi 600 \times 10^6 (0.032)] = 8.28932 \times 10^{-9} \text{ H} \implies \underline{L = 8.29 \text{ nH}}$.
- 7) As shown on circuit, everywhere toward the source from the location of L will be matched, i.e., $Z_{in} = Z_0 = 75 \Omega$.


$$z_A = \underline{0.167 + j \, 0.5 \, \Omega/\Omega} \qquad y_A = \underline{0.6 - j \, 1.8 \, S/S}$$

$$y_{m1} = \underline{1 + j \, 2.4 \, S/S} \qquad y_{m2} = \underline{1 - j \, 2.4 \, S/S} \qquad \lambda = \underline{40 \, cm}$$

$$d = \underline{d_1 = 0.3693\lambda = 14.772 \text{ cm}}$$
 $Y_L = \underline{-j0.032 \text{ S}}$ $L = \underline{8.29 \text{ nH}}$

Tuesday, March 26, 2024 2 / 2

