EE 483/583 Antennas for Wireless Communications (Spring 2024)

Homework 11

Thursday, April 18, 2024

1) 5.3 at 20 MHz . Assume loop is 'small'.
2) 5.14 at 80 MHz . Note: "resonant" means you assume $X_{A}=0$. Assume antenna is 'small'.
3) 5.17
4) For single, 18 cm diameter, circular loop of wire ($14 \mathrm{AWG}, \sigma_{\text {wire }}=3 \times 10^{7} \mathrm{~S} / \mathrm{m}$) in free space, centered on the $x-y$ plane and fed where it crosses the positive x axis, use NEC-2 to:
a) Determine the input impedance over normalized frequency range $0.1 \leq k a \leq$ 2. On a single graph, plot $R_{\text {ant }}$ and $X_{\text {ant }}$ versus $k a$.
b) EE 483 only: In a table, list $k a=0.1$, the anti-resonant \& resonant frequencies ($k a \& \mathrm{MHz}$), $R_{\text {ant }}, X_{\text {ant }}$, and antenna efficiency η. Format: col. 1 $k a$, col. $2 f(\mathrm{MHz})$, col. $3 R_{\text {ant }}$, col. $4 X_{\text {ant }}$, col. 5η, and col. 6 description (e.g., small loop, resonance \#1 ...) EE 583 only: In a table, list $k a=0.1$, the antiresonant \& resonant frequencies ($k a \& \mathrm{MHz}$), $R_{\text {ant }}, X_{\mathrm{ant}}, R_{\mathrm{rad}}, R_{\mathrm{loss}}$, and η. Format: Col. 1 ka , col. $2 f(\mathrm{MHz})$, col. $3 R_{\mathrm{ant}}$, col. $4 X_{\mathrm{ant}}$, col. $5 R_{\mathrm{rad}}$, col. 6 $R_{\text {loss }}$, col. 7η, and col. 8 description (e.g., small loop, resonance \#1 ...)
c) Determine the current distribution at $k a=0.1$ and the first resonant frequency. On a single graph, plot the normalized current magnitudes (normalize each trace independently so that its maximum is 1) versus the fractional circumference (e.g., $0 \leq$ distance/circumference <1).
d) Extra credit: At $k a=0.1$ and the first resonant frequency, determine the farzone E-plane ($x-y$ plane) and H-plane ($x-z$ plane) power gain radiation patterns (in dBi). On two polar graphs, plot the relative power radiation patterns for the E-plane and H-plane scaled so that the center of each plot is at -30 dB and the outer ring is at 0 dB . Tabulate the maximum and minimum gain in each plane at each frequency.

Hint: Use GA command to 'make' loop (start first segment at a negative angle so its center will be on axis) and GM command to rotate loop onto $x-y$ plane.

