EE 483/583 Antennas for Wireless Communications (Spring 2024)

Homework 2

Tuesday, January 23, 2024

1) 2.33bcf For part b, assume $E_{x}=0.5 \mathrm{~V} / \mathrm{m}$ and $E_{y}=1 \mathrm{~V} / \mathrm{m}$. For parts $\mathrm{c} \& \mathrm{f}$, assume $E_{x}=E_{y}=1 \mathrm{~V} / \mathrm{m}$ Also, in each case, write-out a time-domain equation for the electric field, plot/sketch the polarization ellipse $\mathrm{w} /$ wave propagating into page, annotate RH/LH instead of CW/CCW, and find tilt angle with respect to the $+\mathcal{E}_{y}$-axis.
2) A plane wave $\overline{\mathcal{E}}_{i}=\hat{a}_{x} 60 \cos \left(\omega t-20^{\circ}-\beta y\right)+\hat{a}_{z} 80 \cos \left(\omega t+40^{\circ}-\beta y\right)(\mathrm{V} / \mathrm{m})$ is incident on an infinitesimal dipole located at the origin and oriented along the z-axis. What direction is the plane wave traveling? Sketch the polarization ellipse of the incident plane wave $\mathrm{w} /$ wave propagating into page and annotate with its polarization. Next, find $\hat{\rho}_{w}, \hat{\rho}_{a}$, and the PLF when $\theta=90^{\circ}$ and $\phi=$ 270°. [Hints: Look at Chapter 4 section on infinitesimal dipoles and remember how to convert from spherical to Cartesian unit vectors.]
3) 2.45
4) 2.53 Make generator peak voltage 12 V and impedance of $50-j 20 \Omega$. [Hint: Look at Chapter 4 section on $\lambda / 2$ dipoles.]
5) 2.57 with length of $\lambda / 50$ and radius of $\lambda / 250$. [Hint: look at Chapter 4.]
6) EE 483 only: 2.68 Assume a lossless 75Ω transmission line of length 1.7λ connects source and dipole. [Hint: Look at Chapter 4 section on $\lambda / 2$ dipoles.]
7) EE 583 only: 2.67 For part a, plot/sketch polarization ellipse w/ wave propagating into page for a radiated wave traveling down the $+x$-axis assuming $E_{0}=1000 \mathrm{~V} / \mathrm{m}$ and $\frac{e^{-j k r}}{r}=0.01 \angle 0^{\circ}\left(\mathrm{m}^{-1}\right)$.

$$
\text { Due Tuesday, January 30, } 2024 .
$$

Note: For all plots/sketches, the positive axes must be to the top or right.

