EE 483/583 Antennas for Wireless Communications (Spring 2024)
 Homework 1

Thursday, January 18, 2024

1) 2.4 bd
2) Plot polar radiation patterns for the U of 2.4 bd (both unitless and in $\mathrm{dB} \mathrm{w} / 0$ to -20 dB scale) in the elevation planes coinciding with the $x-z$ plane (i.e., wrt θ when $\phi=0 \& 180^{\circ}$). Attach copy of all work done (e.g., copy of command window, m-file, ...)
3) 2.7 for U given in (b)
4) 2.12 for U given in (c).
5) Plot polar radiation patterns for U of 2.12(c) (both unitless and in $\mathrm{dB} \mathrm{w} / 0$ to 20 dB scale) in the elevation planes coinciding with the y-z plane (i.e., wrt θ when $\phi=90^{\circ}$) and the azimuthal plane (i.e., wrt ϕ when $\theta=90^{\circ}$). Attach copy of all work done (e.g., copy of command window, m-file, ...)
6) 2.14 for U given in (c).
7) 2.19 Modify problem so that the maximum gain is 18 dB and that of the first sidelobe is -14 dB .
8) 2.32 Modify problem so that the maximum gain is 15 dBi and the input power is 10 W . Also, determine the maximum radiation intensity.
9) EE 583 only- 2.31 [Hint: $J_{1}()$ is a Bessel function of the first kind of order 1.]
