Tips for matching Yagi-Uda Antennas

- 1) Pick reasonable values for the match (see below).
 - \triangleright Diameter of feed 2a'- usually you will want this to be less than the Yagi-Uda element diameters 2a to make $\alpha > 1$.
 - Feed spacing s- make less than $s_{12}/4$, more than 1 cm (practical construction), and less than 5 cm (don't want the characteristic impedance of the feed section Z_{0t} to be too large).
 - Feed length l' or l'/2- make less than a quarter of the initial driven element length $l_2/4$ to avoid overly disturbing the current distribution .
- 2) Run NEC-2 on your initial try w/ driven element broken into three pieces (driven element tips w/ radius a and middle/Gamma-match portion w/ radius a_e) to get Z_A . Then, calculate the overall input impedance Z_{in} .
- 3) Next try(s), adjust driven element length l_2 to get antenna back to resonance. I.e., If Z_{in} has negative reactance, make l_2 longer. If Z_{in} has positive reactance, make l_2 shorter. When adjusting element lengths, maintain symmetry! I.e., if shortening an element by 2 mm, take 1 mm off each tip. Make smallish adjustments (no more than a couple millimeters at a time)!
- 4) Once you get to or close to resonance (e.g., $X_{\rm in} < 1 \Omega$), is $Z_{\rm in} \approx R_{\rm in}$ too small or too big?
 - a) If fairly close to spec, you can try adjusting l' or l'/2 and s (usually don't bother w/ 2a') to increase/decrease the current divisor factor α and hence the size of $R_{\rm in}$. Will usually need to tweak driven element length l_2 again to get back to resonance.
 - b) From experience, increasing length of the reflector l_1 usually helps increase $R_{\rm in}$. Make smallish adjustments (no more than a couple millimeters at a time)! Will usually need to tweak l_2 again to get back to resonance. Keep an eye on the gain and FB ratio.
 - c) From experience, decreasing length of the first director l_3 helps usually helps increase $R_{\rm in}$. Make smallish adjustments (no more than a couple millimeters at a time)! Will usually need to tweak l_2 length again to get back to resonance. Keep an eye on the gain and FB ratio.

<u>Overall</u>

- ➤ Unless you have lots of experience (only me at SDSMT), only change one variable at a time.
- ➤ Big changes lead to ping-ponging past the sweet spot.
- When adjusting element lengths, maintain symmetry! I.e., if shortening an element by 2 mm, take 1 mm off of each tip.
- ➤ It is best to semi-automate process by using MathCad, Matlab, ...