Tips for matching Yagi-Uda Antennas

- 1) Pick reasonable values for the match (see below).
 - > Start with driven element l_2 either simple average or geometric average of $l_1 \& l_3$.
 - > Diameter of feed 2*a*'- you will want this to be less than the Yagi-Uda element diameters 2*a* to make $\alpha > 1$.
 - Feed spacing *s* make less than $s_{12}/4$, more than 1 cm (practical construction), and less than 4 cm (don't want the characteristic impedance of the feed section Z_{0t} to be too large, 200 < Z_{0t} < 300 Ω works well).
 - Feed length *l*'- make less than a third of the initial driven element length to avoid overly disturbing the current distribution $l' \sim l_2/4$ works pretty well. Divide by 2 for Γ -match length l'/2.
- 2) Run NEC-2 on your initial try w/ driven element broken into three pieces (driven element tips w/ radius *a* and middle/match portion w/ radius a_e) to get Z_A . Then, calculate the overall input impedance Z_{in} .
- 3) Next try(s), adjust driven element length l_2 to get antenna to resonance. I.e., If Z_{in} has negative reactance, make l_2 longer. If Z_{in} has positive reactance, make l_2 shorter. Make smallish adjustments (no more than a couple millimeters at a time)!
- 4) Once you get to or close to resonance (e.g., $X_{in} < 2 \Omega$), is $Z_{in} \approx R_{in}$ too small or too big?
 - a) From experience, increasing length of the reflector l_1 usually helps increase R_{in} . Make smallish adjustments (no more than a couple millimeters at a time)! Will usually need to tweak l_2 again to get back to resonance. Keep an eye on the gain and FB ratio.
 - b) From experience, decreasing length of the first director l_3 helps usually helps increase R_{in} . Make smallish adjustments (no more than a couple millimeters at a time)! Will usually need to tweak l_2 length again to get back to resonance. Keep an eye on the gain and FB ratio.
 - c) If fairly close to spec, you can try adjusting match length (l' or l'/2) or *s* (usually don't bother w/ 2*a*') to increase/decrease the current divisor factor α and hence the size of R_{in} . Will usually need to tweak driven element length l_2 again to get back to resonance.

<u>Overall</u>

- Unless you have lots of experience (only me at SDSMT), only change one variable at a time.
- Big changes lead to ping-ponging past the sweet spot.
- When adjusting element lengths, maintain symmetry! I.e., if shortening an element by 2 mm, take 1 mm off of each tip.
- ➢ It is best to semi-automate process by using MathCad, Matlab, ...