Design a six-element Yagi-Uda antenna for VHF television channel 13 using a copperpipe boom with an outer diameter of $9 / 16$ inch and brass elements with an outer diameter of $3 / 8$ inch. Assume boom will need to extend 12 " past center of reflector to allow antenna to be attached to an antenna mast, and 1" past center of last director for mechanical strength.
a) Tabulate design specifications (assume 75Ω feeding transmission line)

Six-element VHF Channel 13 Yagi-Uda Antenna Specifications

Directivity/gain $D_{\max }$	$10.2 \mathrm{dBd}=\mathbf{1 2 . 3 5} \mathbf{~ d B i}$	
Frequency range	$\mathbf{2 1 0} \mathbf{- \mathbf { 2 1 6 } \mathbf { ~ M H z }}$	$f_{c}=213 \mathrm{MHz}$
Input impedance R_{0}	$\mathbf{7 5} \boldsymbol{\Omega}$	

b) Show complete design procedure (e.g., design figures, spreadsheets, ...) in a fashion similar to example given in class. No matching network is required.

Design Steps:

1. Select or specify design parameters:
a. The directivity of a 6 element Yagi-Uda antenna, from Table 10.6 , is $10.2 \mathrm{dBd}=$ $10.2+2.15=\underline{\mathbf{1 2 . 3 5} \mathbf{d B i}}$. Note: For a Yagi-Uda antenna, gain \approx directivity.
b. Design Frequency-Channel $13210-216 \mathrm{MHz}$, so $f=\mathbf{2 1 3} \mathbf{~ M H z}$.
c. Desired input impedance- $\underline{\boldsymbol{R}}_{\mathbf{0}}=\mathbf{7 5 \Omega}$ (not required for design process, yet)
2. Select diameter d of elements and diameter D of metallic supporting boom

Element diameter- $\boldsymbol{d = 3 / 8} \boldsymbol{\prime \prime}=\mathbf{0 . 9 5 2 5} \mathbf{~ c m}$ (use brass pipe)
Boom diameter- $\quad D=\mathbf{9 / 1 6 "}=\mathbf{1 . 4 2 8 7 5} \mathbf{~ c m}$ (use $1 / 2 "$ I.D. copper pipe)
3. Calculate design wavelength λ. Use λ to calculate s_{12} (reflector-driven element spacing) \& $s_{i j}$ [driven-director \& director-director spacing(s)] using Table 10.6 values.

$$
\begin{aligned}
\lambda=\frac{c}{f}=\frac{2.998 \times 10^{8}}{213 \times 10^{6}}=1.4075117 \mathrm{~m} & \Rightarrow \underline{\lambda=140.7512 \mathrm{~cm}} \\
& \underline{s_{12}}=\mathbf{0 . 2 \lambda}=\mathbf{2 8 . 1 5 0 2} \mathrm{cm} \\
& \underline{s_{i j}}=\mathbf{0} . \mathbf{2 5 \lambda}=\mathbf{3 5 . 1 8 7 8} \mathbf{~ c m}
\end{aligned}
$$

4. Calculate d / λ. Is $0.001 \leq d / \lambda \leq 0.04$?

$$
d / \lambda=0.9525 / 140.7512 \Rightarrow \underline{d} / \lambda=0.0067673 \quad \Rightarrow \text { Within } 0.001 \leq d / \lambda \leq 0.04 \text { range. }
$$

5. If a metal boom is used, calculate D / λ. Is $0.001 \leq D / \lambda \leq 0.04$?

$$
D / \lambda=1.42875 / 140.7512 \Rightarrow \underline{D} / \lambda=0.010151 \Rightarrow \text { Within } 0.001 \leq D / \lambda \leq 0.04 \text { range }
$$

6. Since $d / \lambda=0.067673 \neq 0.0085$, the elements lengths must be corrected. Plot the lengths of the reflector (element 1) \& first director (element 3) from Table 10.6 on design curves \boldsymbol{B} on Figure 10.25. Label these points l_{1} '' and l_{3} '' respectively.

On Design curves B at $d / \boldsymbol{\lambda}=0.0085$, plot- $\underline{\boldsymbol{l}_{1} \boldsymbol{\prime}}=\mathbf{0} .482 \lambda \& \boldsymbol{l}_{\mathbf{3}} \boldsymbol{\prime}=\mathbf{0 . 4 2 8 \lambda}$

Table 10.6 OPTIMIZED UNCOMPENSATED LENGTHS OF PARASITIC ELEMENTS FOR YAGIUDA ANTENNAS OF SIX DIFFERENT LENGTHS

$\begin{aligned} & d / \lambda=0.0085 \\ & \boldsymbol{s}_{\mathbf{1 2}}=\mathbf{0 . 2 \lambda} \end{aligned}$		LENGTH OF YAGI-UDA (IN WAVELENGTHS)					
		0.4	0.8	1.20	2.2	3.2	4.2
LENGTH OF REFLECTOR (l_{1} / λ)		0.482	0.482	0.482	0.482	0.482	0.475
[1]	l_{3}	0.442	0.428	0.428	0.432	0.428	0.424
	l_{4}		0.424	0.420	0.415	0.420	0.424
	l_{5}		0.428	0.420	0.407	0.407	0.420
	l_{6}			0.428	0.398	0.398	0.407
	l_{7}				0.390	0.394	0.403
	l_{8}				0.390	0.390	0.398
	l_{9}				0.390	0.386	0.394
	l_{10}				0.390	0.386	0.390
	l_{11}				0.398	0.386	0.390
	l_{12}				0.407	0.386	0.390
	l_{13}					0.386	0.390
	l_{14}					0.386	0.390
	l_{15}					0.386	0.390
	l_{16}					0.386	
	l_{17}					0.386	
SPACING BETWEEN DIRECTORS ($s_{i j} / \lambda$)		0.20	0.20	0.25	0.20	0.20	0.308
DIRECTIVITY RELATIVE TO HALF-WAVE DIPOLE (dB)		7.1	9.2	10.2	12.25	13.4	14.2
DESIGN CURVE (SEE FIGURE 10.25)		(A)	(B)	(B)	(C)	(B)	(D)

SOURCE: Peter P. Viezbicke, Yagi Antenna Design, NBS Technical Note 688, December 1976.
7. Draw a vertical line from $d / \lambda=0.067673$ through reflector and director design curves \boldsymbol{B}, and read the corrected lengths of the reflector $l_{1}{ }^{\prime}$ and first director $l_{3}{ }^{\prime}$. The length l_{3} ' should be used for any other directors that are the same original length as l_{3}.

Label and read the corrected (for element diameter) lengths-

$$
\underline{l_{1}^{\prime}}=0.483 \lambda \quad \& \quad \underline{l_{3}}{ }^{\prime}=l_{6}^{\prime}=0.434 \lambda .
$$

Figure 10.25 Design curves to determine element lengths of Yagi-Uda arrays. (SOURCE: P. P. Viezbicke, "Yagi Antenna Design," NBS Technical Note 688, U.S. Department of Commerce/National Bureau of Standards, December 1976)
8. Measure and label the arc length Δl between $l_{3}, '$ and l_{3} ' along the design curve.

Using ruler, $\underline{\Delta l=0.56 \mathrm{~cm}}$.
9. Plot the remaining original optimized director lengths from Table 10.6 on the appropriate director design curve on Figure 10.25 and label $l_{i}{ }^{\prime \prime}$

On director design curve B, plot length of the second \& third directors-

$$
\underline{l}_{4} \underline{L}^{\prime \prime}=l_{5} \underline{x}^{\prime \prime}=0.420 \lambda
$$

10. To find the corrected (for element diameter) length(s) for the remaining directors, move Δl from $l_{i} "$ (same direction as between $l_{3}{ }^{\prime \prime}$ and $l_{3}{ }^{\prime}$) to the corrected length l_{i}.

$$
\text { Move } \Delta l=1.45 \mathrm{~cm} \text { from } l_{4}{ }^{\prime \prime}=l_{5}{ }^{\prime \prime}=0.420 \lambda, \text { and read- } \underline{\boldsymbol{l}}_{4}^{\prime}=\boldsymbol{l}_{5}{ }^{\prime}=\mathbf{0 . 4 2 6} .
$$

11. The element lengths must be lengthened to compensate for a metal boom. On Figure 10.26, draw a vertical line from $\boldsymbol{D} / \boldsymbol{\lambda}=\mathbf{0 . 0 1 0 1 5 1}$ through the curve. Read the compensation length.

From Figure 10.26 , read- compensation length $=\mathbf{0 . 0 0 6 4 4 \lambda}$

$$
\begin{array}{r}
l_{1}=l_{1^{\prime}}+0.00644 \lambda=0.483 \lambda+0.00644 \lambda=0.48944 \lambda \Rightarrow \underline{l_{1}=68.889 \mathrm{~cm}} \\
l_{3}=l_{6}=l_{3}{ }^{\prime}+0.00644 \lambda=0.434 \lambda+0.00644 \lambda=0.44044 \lambda \Rightarrow \underline{l}_{3}=l_{6}=61.992 \mathrm{~cm} \\
l_{4}=l_{5}=l_{4}{ }^{\prime}+0.00644 \lambda=0.426 \lambda+0.00644 \lambda=0.43244 \lambda \Rightarrow \underline{l}_{4}=l_{5}=60.866 \mathrm{~cm}
\end{array}
$$

Figure 10.26 Increase in optimum length of parasitic elements as a function of metal boom diameter. (source: P. P. Viezbicke," Yagi Antenna Design," NBS Technical Note 688, U.S. Department of Commerce/National Bureau of Standards, December 1976)
12. Design matching network (e.g., Gamma match, ...) to connect the antenna to the selected transmission line. The length of the driven element l_{2} is empirically adjusted to achieve a match at the design frequency. Typically, it has a length between that of the reflector and the first director.

$$
l_{3}=61.992 \mathrm{~cm}<l_{2}<l_{1}=68.889 \mathrm{~cm}
$$

c) Make a scale drawing(s) of the final antenna designed including boom (transmission line may be omitted) that a machinist could take and use to build the antenna (use centimeters for all dimensions).
6 element, channel 13 Yagi-Uda antenna w/ boom

