Design a six-element Yagi-Uda antenna for VHF television channel 10 using a copperpipe boom with an outer diameter of 7/8 inch and brass elements with an outer diameter of 3/8 inch. **Note:** Assume $c = 2.998 \times 10^8$ m/s.

a) Tabulate design specifications (assume 50 Ω feeding transmission line)

Six-element Channel 13 Yagi-Uda antenna Specifications

Directivity/gain D_{\max}	10.2 dBd = 12.35 dBi	
Frequency range	192 - 198 MHz	$f_c = 195 \text{ MHz}$
Input impedance R_0	50 Ω	

b) Show complete design procedure (e.g., design figures, spreadsheets, ...) in a fashion similar to example given in class.

Design Steps:

- 1. Select or specify design parameters:
 - a. The directivity of a 6 element Yagi-Uda antenna, from Table 10.6, is 10.2 dBd = 10.2 + 2.15 = 12.35 dBi Note: For a Yagi-Uda antenna, gain \approx directivity.
 - b. Design Frequency- Channel 10 192-198 MHz, so $\underline{f} = 195 \text{ MHz}$.
 - c. Desired input impedance- $\underline{R_0} = 50 \Omega$ (not required for design process, yet)
- 2. Select diameter d of elements and diameter D of metallic supporting boom

Element diameter-
$$\underline{d} = 3/8$$
" = 0.9525 cm (use brass pipe)
Boom diameter- $\underline{D} = 7/8$ " = 2.2225 cm (use 3/4" I.D. copper pipe)

3. Calculate design wavelength λ . Use λ to calculate s_{12} (reflector-driven element spacing) & s_{ij} [driven-director & director-director spacing(s)] using Table 10.6 (next page) values.

$$\lambda = \frac{c}{f} = \frac{2.998 \times 10^8}{195 \times 10^6} = 1.5374359 \text{ m} \Rightarrow \frac{\lambda = 153.7436 \text{ cm}}{195 \times 10^6} = \frac{s_{12} = 0.2\lambda = 30.7487 \text{ cm}}{195 \times 10^6}$$

 $\underline{s_{ij}} = 0.25\lambda = 38.4359 \text{ cm}$

4. Calculate d/λ . Is $0.001 \le d/\lambda \le 0.04$?

$$d/\lambda = 0.9525/153.7436 = 0.00619538$$
 \Rightarrow Within $0.001 \le d/\lambda \le 0.04$ range.

5. If a metal boom is used, calculate D/λ . Is $0.001 \le D/\lambda \le 0.04$?

$$D/\lambda = 2.2225/153.7436 = 0.0144559$$
 \Rightarrow Within $0.001 \le D/\lambda \le 0.04$ range.

6. Since $d/\lambda = 0.00619538 \neq 0.0085$, the elements lengths must be corrected. Plot the lengths of the reflector (element 1) & first director (element 3) from Table 10.6 on design curves **B** on Figure 10.25. Label these points l_1 'and l_3 ' respectively.

On Design curves B at $d/\lambda = 0.0085$, plot- $l_1'' = 0.482\lambda$ & $l_3'' = 0.428\lambda$

Table 10.6 OPTIMIZED UNCOMPENSATED LENGTHS OF PARASITIC ELEMENTS FOR YAGI-UDA ANTENNAS OF SIX DIFFERENT LENGTHS

$d/\lambda = 0.0085$		LENGTH OF YAGI-UDA (IN WAVELENGTHS)						
$s_{12} = 0.2\lambda$		0.4	0.8	1.20	2.2	3.2	4.2	
LENGTH OF REFLECTOR (l_1/λ)		0.482	0.482	0.482	0.482	0.482	0.475	
LENGTH OF DIRECTORS, λ	l_3	0.442	0.428	0.428	0.432	0.428	0.424	
	l_4		0.424	0.420	0.415	0.420	0.424	
	l_5		0.428	0.420	0.407	0.407	0.420	
	l_6			0.428	0.398	0.398	0.407	
	l_7				0.390	0.394	0.403	
	l_8				0.390	0.390	0.398	
	l_9				0.390	0.386	0.394	
	l_{10}				0.390	0.386	0.390	
	l_{11}				0.398	0.386	0.390	
	l_{12}				0.407	0.386	0.390	
	l_{13}					0.386	0.390	
	l_{14}					0.386	0.390	
	l_{15}					0.386	0.390	
	l_{16}					0.386		
	l_{17}					0.386		
SPACING BETWEEN DIRECTORS (s_{ij}/λ)		0.20	0.20	0.25	0.20	0.20	0.308	
DIRECTIVITY RELATIVE TO HALF-WAVE DIPOLE (dB)		7.1	9.2	10.2	12.25	13.4	14.2	
DESIGN CURVE (SEE FIGURE 10.25)		(A)	(B)	(B)	(C)	(B)	(D)	

SOURCE: Peter P. Viezbicke, Yagi Antenna Design, NBS Technical Note 688, December 1976.

7. Draw a vertical line from $d/\lambda = 0.0062$ through reflector and director design curves B, and read the corrected lengths of the reflector l_1 ' and first director l_3 '. The length l_3 ' should be used for any other directors that are the same original length as l_3 .

Label and read the corrected (for element diameter) lengths-

$$\underline{l_1' = 0.484\lambda}$$
 & $\underline{l_3' = l_6' = 0.436\lambda}$

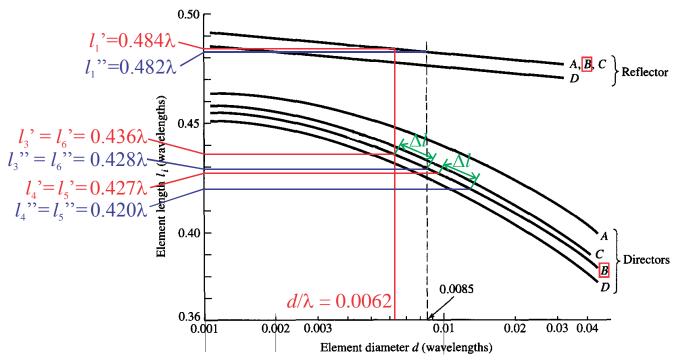


Figure 10.25 Design curves to determine element lengths of Yagi-Uda arrays. (SOURCE: P. P. Viezbicke, "Yagi Antenna Design," NBS Technical Note 688, U.S. Department of Commerce/National Bureau of Standards, December 1976)

- 8. Measure and label the arc length Δl between l_3 'and l_3 along the design curve. Using ruler, $\Delta l = 0.5685$ cm.
- 9. Plot the remaining original optimized director lengths from Table 10.6 on the appropriate director design curve on Figure 10.25 and label $l_i^{"}$

On director design curve B, plot length of the second & third directors-

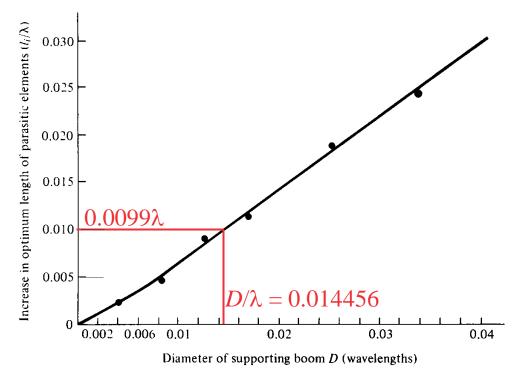
$$l_4$$
 '' = l_5 '' = 0.420λ

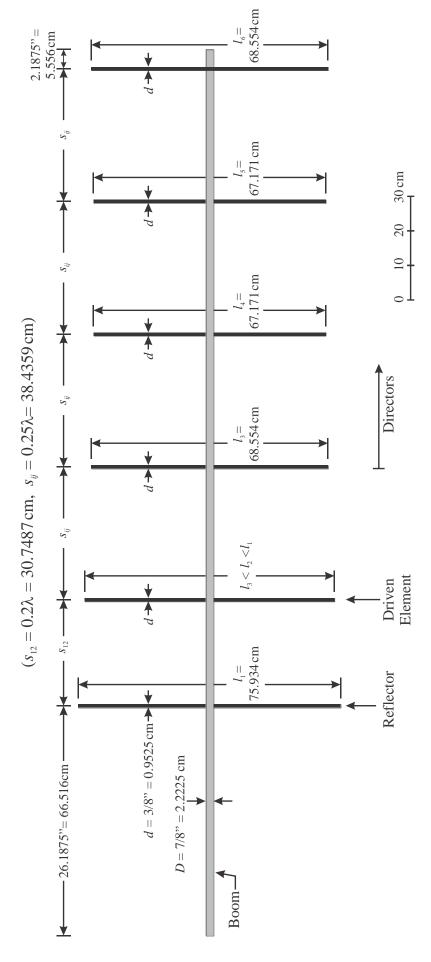
10. To find the corrected (for element diameter) length(s) for the remaining directors, move Δl from l_i (same direction as between l_3 " and l_3 ") to the corrected length l_i .

Move $\Delta l = 0.5685$ cm from l_4 '' = l_5 '' = 0.420 λ , and read- $\underline{l_4}$ ' = $\underline{l_5}$ ' = 0.427 λ

11. The element lengths must be lengthened to compensate for a metal boom. On Figure 10.26, draw a vertical line from $\underline{D/\lambda} = 0.014456$ through the curve. Read the compensation length.

From Figure 10.26 (below), read- compensation length = 0.0099λ $l_1 = l_1' + 0.0099\lambda = 0.484\lambda + 0.0099\lambda = 0.4939\lambda \implies l_1 = 75.934 \text{ cm}$ $l_3 = l_6 = l_3' + 0.0099\lambda = 0.436\lambda + 0.0099\lambda = 0.4459\lambda \implies l_3 = l_6 = 68.554 \text{ cm}$ $l_4 = l_5 = l_4' + 0.0099\lambda = 0.427\lambda + 0.0099\lambda = 0.4369\lambda \implies l_4 = l_5 = 67.171 \text{ cm}$




Figure 10.26 Increase in optimum length of parasitic elements as a function of metal boom diameter. (SOURCE: P. P. Viezbicke, "Yagi Antenna Design," NBS Technical Note 688, U.S. Department of Commerce/National Bureau of Standards, December 1976)

12. Design matching network (e.g., Gamma match, ...) to connect the antenna to the selected transmission line. The length of the driven element is empirically adjusted to achieve a match at the design frequency. Typically, it has a length between that of the reflector and the first director.

$$l_3 = 68.554 \text{ cm} < l_2 < l_1 = 75.934 \text{ cm}$$

c) Make a **scale** drawing of the final Yagi-Uda antenna design including boom (transmission line may be omitted) that a machinist could take and use to build the antenna (use centimeters for all dimensions). Assume boom will need to extend 26" past the reflector to allow antenna to be attached to an antenna mast, and 2" past the last director for mechanical strength.

6 element, channel 10 Yagi-Uda antenna w/ boom

