Here, you will match the six-element Yagi-Uda antenna for channel 13 from the previous assignment with the boom omitted to a $\mathbf{1 0 0} \Omega$ twin-lead transmission line using a Tmatch so that the VSWR is less than 1.1 at the center frequency f_{c}. Steps:
a) Tabulate the element lengths and spacings (in cm) for the unmatched design (make driven element length the simple average of the reflector and first director).
b) Model unmatched design using NEC-2 and determine and tabulate input impedance Z_{a}, input reflection coefficient $\Gamma_{\text {in }}$ (polar format), VSWR, maximum gain $G_{\text {max }}(\mathrm{dBi})$, backlobe gain $G_{\text {back }}(\mathrm{dBi})$, and front-to-back/FB ratio (dB) at f_{c}.
c) Match the antenna. At each step, discuss, list, and justify design changes/choices as well as show results/work.
d) In a table, summarize the original (unmatched) and final (matched)- Z_{a} or $Z_{\text {in }}, \Gamma_{\text {in }}$, VSWR, $G_{\text {max }}(\mathrm{dBi}), G_{\text {back }}(\mathrm{dBi})$, and FB ratio (dB) at f_{c}. Comment on how the final design compares with the original.
e) Accurately sketch final antenna design with T-match (no boom).

- Include the input NEC-2 file(s) and relevant excerpts of the output file(s). Assume $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

a) Design Summary:

Directivity of a six-element Yagi-Uda antenna is $10.2 \mathrm{dBd}=10.2+2.15=\underline{\mathbf{1 2 . 3 5} \mathbf{~ d B i}}$
Design Frequency- Channel 13 ($210-216 \mathrm{MHz}$), so $\boldsymbol{f}=\mathbf{2 1 3} \mathbf{~ M H z}$.
Desired input impedance- $\boldsymbol{R}_{\mathbf{0}}=\mathbf{1 0 0} \boldsymbol{\Omega}$ (for T-match)

$\lambda=\frac{c}{f}=\frac{2.998 \times 10^{8}}{213 \times 10^{6}}=1.4075117 \mathrm{~m}=\underline{140.7512 \mathrm{~cm}}$
Table 1 Element lengths and spacings for the unmatched design

Description	(cm)
Reflector, $\boldsymbol{l}_{\mathbf{\prime}}{ }^{\prime}=0.483 \lambda$	67.983
Driven, $\boldsymbol{l}_{\mathbf{2}}{ }^{\prime}=0.4585 \lambda$	64.534
$1^{\text {st }}$ director, $l_{3}{ }^{\prime}=0.434 \lambda$	61.086
$2^{\text {nd }}$ director, $l_{4}{ }^{\prime}=0.426 \lambda$	59.960
$3^{\text {rd }}$ director, $l_{5}{ }^{\prime}=0.426 \lambda$	59.960
$4^{\text {th }}$ director, $l_{6}{ }^{\prime}=0.434 \lambda$	61.086
Reflector-driven spacing, $s_{12}=0.2 \lambda$	28.1502
Reflector-driven spacing, $s_{i j}=0.25 \lambda$	35.1878

b) Model unmatched design using NEC-2

NEC-2 Input file

CM yagi_6element_ch13.txt

CM Determine the antenna mode input impedance of the driven element.
CM Center frequency is $213 \mathrm{MHz} \mathrm{W} /$ wavelength of 140.75 cm .
CM 6-element Yagi-Uda antenna dimensions:
CM element diameters: $d=0.9525 \mathrm{~cm}=0.375 \mathrm{in}$, radius $a=0.47625 \mathrm{~cm}$
CM Reflector $11=67.983 \mathrm{~cm}$
CM Driven element $12=64.534 \mathrm{~cm}$
CM Directors $13=16=61.086 \mathrm{~cm}$, and $14=15=59.960 \mathrm{~cm}$
CM Reflector-Driven spacing $S 12=28.1502 \mathrm{~cm}$
CM other element spacings $\mathrm{Sij}=35.1878 \mathrm{~cm}$
CM
CM Segment length approx. delta $=3.8 \mathrm{~cm}=8 \mathrm{a}$
CE

GW	117	-0.339915	0	0.0	0.3399150 .00 .0			0.0047625		Re
11										
GW	217	-0.32267	0.0	0.281502	0.32267	0.0	0.281502	0.0047625		Driven 12
GW	316	-0.30543	0.0	0.63338	0.30543	0.0	0.63338	0.0047625		Director 13
W	415	-0.2998	0.0	0.985258	0.2998	0.0	0.985258	0.0047625		Director 14
GW	515	-0.2998	0.0	1.337136	0.2998	0.0	1.337136	0.0047625		Director 15
GW	616	-0.30543	0.0	1.689014	0.30543	0.0	1.689014	0.0047625		Director 16

GE 0 ! free space
EK 0 ! use extended kernel for better accuracy
PT -1 ! No currents
FR 0100213.00 ! center freq of CH 13
EX 02901.00 .0 ! center segment of driven element
RP 02200000.00 .0180 .090 .0 ! Main beam and backlobe directivities EN

NEC-2 Output file excerpts

Table 2 Unmatched design six-element Yagi-Uda antenna for channel 13

$Z_{a}(\Omega)$	$\Gamma_{\text {in }}$	VSWR	$G_{\max }(\mathrm{dBi})$	$G_{\text {back }}(\mathrm{dBi})$	FB ratio (dB)
$15.8661+j 15.9875$	$0.7322 \angle 161.4^{\circ}$	6.468	12.46	-2.38	14.85

c) Match the antenna.

Try 1: T-Match Design choices

Driven element length: $l_{2}{ }^{\prime}=63 \mathrm{~cm}$ (shorten from $\underline{64.534 \mathrm{~cm}}$ as Z_{a} was inductive)
T-Match diameter: $2 a^{\prime}=1 / 8^{\prime \prime}=\underline{0.3175 \mathrm{~cm}}$ (choose smaller than $2 a$ to get $\alpha>1$)
T-Match length: $l^{\prime}=\underline{12 \mathrm{~cm}} \quad$ (choose less than $l_{2}{ }^{\prime} / 4$)
T-Match spacing: $s=\underline{3 \mathrm{~cm}}$ (choose less than $s_{12} / 4$ and so $Z_{0} \sim 300 \Omega$)
From MathCad $Z_{0}=284.86 \Omega$, eff. radius of T-Match $a_{e}=0.88664 \mathrm{~cm}, Z_{t}=j 78.176 \Omega$
NEC results $Z_{a}=12.8849-j 2.53918 \Omega, G_{\max }=13 \mathrm{dBi}, \& G_{\text {back }}=-1.79 \mathrm{dBi}$
$\underline{\text { From MathCad- }} Z_{\text {in }}=78.436+j 29.43 \Omega,|\Gamma|=0.202, \& \operatorname{VSWR}=1.505$ (too high)
Comments: $Z_{\text {in }}$ has inductive reactance. On second try, make l_{2} ' a bit shorter to make $Z_{\text {in }}$ more capacitive and, per suggestion from MathCad, lengthen T-match l '.

Input NEC file:

```
CM yagi_6element_ch13_tmatch_try1.txt
CM THIS PROGRAM A
CM Determine the antenna mode input impedance of the driven element.
CM Center frequency is 213 MHz W/ wavelength of 140.75 cm.
CM 6-element Yagi-Uda antenna dimensions:
CM element diameters: d=0.9525 cm = 0.375in, radius a = 0.47625 cm
CM equiv. radius T-Match portion of driven element ae = 0.88664 cm
CM which has a length of l'= 12 cm
CM Reflector l1 = 67.983 cm
CM Driven element l2 = 63 cm
CM Directors l3 = 16 = 61.086 cm, and l4 = 15 = 59.960 cm
CM Reflector-Driven spacing s12 = 28.1502 cm
CM other element spacings sij = 35.1878 cm
CM Segment length approx. delta = 3.8 cm = 8a
CE
GW 1 17-0.339915 0.0 0.0 0.339915 0.0 0.0 0.0047625 ! Refl l1
GW 2 7-0.315 0.0 0.281502 -0.06 0.0 0.281502 0.0047625 ! Drive end 12
GW 3 3-0.06 0.0 0.281502 0.06 0.0 0.281502 0.0088664 ! Drive mid l2
GW 4 7 0.06 0.0 0.281502 0.315 0.0 0.281502 0.0047625 ! Drive end l2
GW 5 16 -0.30543 0.0 0.63338 0.30543 0.0 0.63338 0.0047625 ! Director 13
GW 6 15-0.2998 0.0 0.985258 0.2998 0.0 0.985258 0.0047625 ! Director 14
GW 7 15 -0.2998 0.0 1.337136 0.2998 0.0 1.337136 0.0047625 ! Director 15
GW 8 16 -0.30543 0.0 1.689014 0.30543 0.0 1.689014 0.0047625 ! Director 16
GE 0 ! free space
EK 0 ! use extended kernel for better accuracy
PT -1 ! No currents
FR 0 1 0 0 213.0 0 ! center freq of CH 13
EX O 3 2 0 1.0 0.0 ! center of l2
RP 0 2 2 0000 0.0 0.0 180.0 90.0 ! Main beam and backlobe directivities
EN
```


MatchCad spreadsheet:

T-Match equations- Try 1

$\mathrm{c}:=2.998 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \quad \mathrm{fc}:=213 \cdot 10^{6} \quad \mathrm{~Hz} \quad \lambda:=\frac{\mathrm{c}}{\mathrm{fc}} \quad \lambda=1.40751 \quad \mathrm{~m}$
$\mathrm{k}:=\frac{2 \cdot \pi}{\lambda} \quad \mathrm{k}=4.46404 \quad \mathrm{rad} / \mathrm{m} \quad$ Zdesired $:=100 \quad \Omega$
$\mathrm{d}:=0.9525 \cdot 10^{-2}$
$\mathrm{a}:=\mathrm{d} \cdot 0.5$
$\mathrm{a}=0.0047625 \mathrm{~m}$
dprime $:=0.3175 \cdot 10^{-2}$
aprime $:=$ dprime -0.5
aprime $=0.0015875$
m

$$
\mathrm{s}:=3 \cdot 10^{-2} \quad \mathrm{~m} \quad \text { lprime }:=12.0 \cdot 10^{-2}
$$

m
$\mathrm{Z} 0:=\frac{376.73}{2 \cdot \pi} \cdot \operatorname{acosh}\left[\frac{\left(\mathrm{~s}^{2}-\mathrm{a}^{2}-\text { aprime }{ }^{2}\right)}{2 \cdot \mathrm{a} \cdot \text { aprime }}\right]$
$\mathrm{Z} 0=284.862 \quad \Omega$
$\mathrm{u}:=\frac{\mathrm{a}}{\text { aprime }} \quad \mathrm{u}=3$
$\mathrm{v}:=\frac{\mathrm{s}}{\text { aprime }}$
$\mathrm{v}=18.89764$
$\alpha:=\frac{\operatorname{acosh}\left[\frac{\left(v^{2}-u^{2}+1\right)}{2 \cdot v}\right]}{\operatorname{acosh}\left[\frac{\left(v^{2}+u^{2}-1\right)}{2 \cdot v \cdot u}\right]}$
$\frac{1}{(1+\mathrm{u})^{2}} \cdot\left(\mathrm{u}^{2} \cdot \ln (\mathrm{u})+2 \cdot \mathrm{u} \cdot \ln (\mathrm{v})\right)$
ae $:=\operatorname{aprime} \cdot e^{(1+u)^{2}}$
$\mathrm{Zt}:=\mathrm{j} \cdot \mathrm{Z} 0 \cdot \tan \left(\frac{\mathrm{k} \cdot \text { lprime }}{2}\right)$
$\alpha=1.5855 \quad$ ae $=0.0088664 \quad \mathrm{~m}$
$\mathrm{Yt}:=\frac{1}{\mathrm{Zt}} \quad \mathrm{Yt}=-0.013 \mathrm{i}$
$\mathrm{S} \quad \frac{\mathrm{Yt}}{2}=-6.396 \mathrm{i} \times 10^{-3}$
S

Za from NEC (a MoM program)- Try 1

$$
\begin{align*}
& \mathrm{Za}:=12.8849-\mathrm{j} \cdot 2.53918 \\
& \Omega \quad \mathrm{Ya}:=\frac{1}{\mathrm{Za}} \quad \mathrm{Ya}=0.07471+0.01472 \mathrm{i} \\
& \text { S } \\
& Y \text { in }:=\frac{Y t}{2}+\frac{Y a}{(1+\alpha)^{2}} \\
& \text { Yin }=0.011-4.193 i \times 10^{-3} \\
& \text { S } \\
& \mathrm{Zin}:=\frac{1}{\mathrm{Y} \text { in }} \\
& Z \text { in }=78.436+29.43 \mathrm{i} \\
& \Omega \quad \text { Zdesired }=100 \\
& \Gamma:=\frac{(\text { Zin - Zdesired })}{\text { Zin + Zdesired }} \quad|\Gamma|=0.202 \quad \text { VSWR }:=\frac{(1+|\Gamma|)}{1-|\Gamma|} \quad \text { VSWR }=1.505 \\
& \text { lsuggested }:=\frac{2}{\mathrm{k}} \cdot \operatorname{atan}\left[\frac{1}{2 \cdot \mathrm{Z} 0 \cdot \operatorname{Im}\left[\frac{\mathrm{Ya}}{(1+\alpha)^{2}}\right]}\right]
\end{align*}
$$

Try 2: T-Match Design choices:

Driven element length: $l_{2}{ }^{\prime}=62.5 \mathrm{~cm}$ (shorten from $\underline{63 \mathrm{~cm}}$ as $Z_{\text {in }}$ was inductive)
Same T-Match diameter: $2 a^{\prime}=1 / 8^{\prime \prime}=\underline{0.3175 \mathrm{~cm}}$
T-Match length: $l^{\prime}=\underline{15 \mathrm{~cm}}$ (lengthen from $\underline{12 \mathrm{~cm}}$ per suggestion from MathCad)
Same T-Match spacing: $s=\underline{3 \mathrm{~cm}}$
From MathCad- $Z_{0}=284.86 \Omega$ (same), $a_{e}=0.88664 \mathrm{~cm}$ (same), $Z_{t}=j 99.1034 \Omega$
NEC results- $Z_{a}=12.6259-j 6.91473 \Omega, G_{\text {max }}=12.96 \mathrm{dBi}, \& G_{\text {back }}=-1.80 \mathrm{dBi}$
From MathCad- $Z_{\text {in }}=109.713+j 0.646 \Omega,|\Gamma|=0.0464, \&$ VSWR $=1.097$ (DONE!)
Comments: Real part of $Z_{\text {in }}$ is a bit high, but we have met the specification.

Input NEC file:

CM yagi_6element_ch13_tmatch_try2.txt
CM THIS PROGRAM ASSUMES THAT THERE IS NO BOOM.
CM Determine the antenna mode input impedance of the driven element.
CM Center frequency is $213 \mathrm{MHz} \mathrm{W} /$ wavelength of 140.75 cm .
CM 6-element Yagi-Uda antenna dimensions:
CM element diameters: $d=0.9525 \mathrm{~cm}=0.375 i n$, radius $a=0.47625 \mathrm{~cm}$
CM equiv. radius T-Match portion of driven element ae $=0.88664 \mathrm{~cm}$
CM which has a length of $l^{\prime}=15 \mathrm{~cm}$ (new)
CM Reflector $11=67.983 \mathrm{~cm}$
CM Driven element $12=62.5 \mathrm{~cm}$ (new)
CM Directors $13=16=61.086 \mathrm{~cm}$, and $14=15=59.960 \mathrm{~cm}$
CM Reflector-Driven spacing s12 $=28.1502 \mathrm{~cm}$
CM other element spacings sij $=35.1878 \mathrm{~cm}$
CM Segment length approx. delta $=3.8 \mathrm{~cm}=8 \mathrm{a}$
CE
GW 1 17-0.339915 0.0 0.0 0.339915 0.0 0.0 0.0047625 ! Refl l1
GW 2 6-0.3125 0.0 0.281502 -0.075 0.0 0.281502 0.0047625 ! Drive end 12
GW $3 \quad 5-0.075 \quad 0.00 .2815020 .075 \quad 0.00 .2815020 .0088664$! Drive mid 12
GW 460.0750 .00 .2815020 .31250 .00 .2815020 .0047625 ! Drive end 12
GW $516-0.305430 .00 .633380 .305430000 .633380 .0047625$! Director 13
GW $615-0.2998 \quad 0.00 .9852580 .2998 \quad 0.00 .9852580 .0047625$! Director 14
GW $715-0.2998 \quad 0.01 .3371360 .2998 \quad 0.01 .3371360 .0047625$! Director 15
GW $816-0.305430 .01 .6890140 .305430 .01 .6890140 .0047625$! Director 16
GE 0 ! free space
EK 0 ! use extended kernel for better accuracy
PT -1 ! No currents
FR 0100213.00 ! center freq of CH 13
EX 03301.00 .0 ! center segment of 12
$R P 02200000.00 .0180 .090 .0$! Main beam and backlobe directivities
EN

MatchCad spreadsheet:

T-Match equations- Try 2
$\mathrm{c}:=2.998 \cdot 10^{8} \quad \mathrm{~m} / \mathrm{s} \quad \mathrm{fc}:=213 \cdot 10^{6} \quad \mathrm{~Hz} \quad \lambda:=\frac{\mathrm{c}}{\mathrm{fc}} \quad \lambda=1.40751 \quad \mathrm{~m}$
$\mathrm{k}:=\frac{2 \cdot \pi}{\lambda} \quad \mathrm{k}=4.46404 \quad \mathrm{rad} / \mathrm{m} \quad$ Zdesired $:=100 \quad \Omega$
$\mathrm{d}:=0.9525 \cdot 10^{-2} \quad \mathrm{a}:=\mathrm{d} \cdot 0.5 \quad \mathrm{a}=0.0047625 \quad \mathrm{~m}$
$\begin{array}{llll}\text { dprime }:=0.3175 \cdot 10^{-2} & \text { aprime }:=\text { dprime }-0.5 & \text { aprime }=0.0015875 & \mathrm{~m} \\ & \text { s }:=3 \cdot 10^{-2} & \mathrm{~m} & \text { lprime }:=15.0 \cdot 10^{-2} \\ \mathrm{~s}\end{array}$
$\begin{array}{ll}\mathrm{Z} 0:=\frac{376.73}{2 \cdot \pi} \cdot \operatorname{acosh}\left[\frac{\left(\mathrm{~s}^{2}-\mathrm{a}^{2}-\text { aprime }{ }^{2}\right)}{2 \cdot \text { a-aprime }}\right] & \mathrm{Z} 0=284.862 \\ \mathrm{u}:=\frac{\mathrm{a}}{\text { aprime }} \quad \mathrm{u}=3 & \mathrm{v}:=\frac{\mathrm{s}}{\text { aprime }}\end{array} \quad \mathrm{v}=18.89764$
$\alpha:=\frac{\operatorname{acosh}\left[\frac{\left(v^{2}-\mathrm{u}^{2}+1\right)}{2 \cdot \mathrm{v}}\right]}{\operatorname{acosh}\left[\frac{\left(\mathrm{v}^{2}+\mathrm{u}^{2}-1\right)}{2 \cdot \mathrm{v} \cdot \mathrm{u}}\right]}$
ae $:=\operatorname{aprime} \cdot \mathrm{e}^{\frac{1}{(1+\mathrm{u})^{2}}} \cdot\left(\mathrm{u}^{2} \cdot \ln (\mathrm{u})+2 \cdot \mathrm{u} \cdot \ln (\mathrm{v})\right)$
$\alpha=1.5855 \quad$ ae $=0.0088664 \quad \mathrm{~m}$
$\mathrm{Zt}:=\mathrm{j} \cdot \mathrm{Z} 0 \cdot \tan \left(\frac{\mathrm{k} \cdot \text { lprime }}{2}\right)$

$$
\mathrm{Zt}=99.1034 \mathrm{i}
$$

Ω
$\mathrm{Yt}:=\frac{1}{\mathrm{Zt}} \quad \mathrm{Yt}=-0.01 \mathrm{i}$
$\mathrm{S} \quad \frac{\mathrm{Yt}}{2}=-5.045 \mathrm{i} \times 10^{-3}$
S

Za from NEC (a MoM program)- Try 1

d) In a table, summarize the original (unmatched) and final (matched)

Table 2 Unmatched vs. matched designs for six-element Yagi-Uda antenna for channel 13

Parameter	Unmatched	Matched
Z_{a} or $Z_{\text {in }}(\Omega)$	$15.8661+j 15.9875$	$109.713+j 0.646$
$\Gamma_{\text {in }}$	$0.7322 \angle 161.4^{\circ}$	$0.0464 \angle 3.627^{\circ}$
VSWR	6.468	1.097
$G_{\max }(\mathrm{dBi})$	12.46	12.96
$G_{\text {back }}(\mathrm{dBi})$	-2.38	-1.80
FB ratio (dB)	14.85	14.76

Comments- Obviously, there was a huge improvement in impedance matching using the T-Match. Main beam gain increased slightly (0.5 dB). Back lobe increased slightly $(0.58 \mathrm{~dB})$. FB ratio is very slightly worse $(0.09 \mathrm{~dB})$.
e) Accurately sketch final antenna design with T-match (no boom).

6 element, channel 13 Yagi-Uda antenna with T-match and without boom

Dimensions: $s_{12}=0.2 \lambda=28.1502 \mathrm{~cm}, s_{i j}=0.25 \lambda=35.1878 \mathrm{~cm}, d=3 / 8 "=0.9525 \mathrm{~cm}$, T-Match- $d^{\prime}=1 / 8^{\prime \prime}=0.3175 \mathrm{~cm}, s=3 \mathrm{~cm}$, and $l^{\prime}=15 \mathrm{~cm}$

