- 10.19 Design a five-turn helical antenna which at 400 MHz operates in the normal mode. The spacing between turns is $\lambda_0/40$. It is desired that the antenna possesses circular polarization. Determine the
 - (a) circumference of the helix (in λ_0 and in meters)
 - (b) length of a single turn (in λ_0 and in meters)
 - (c) overall length of the entire helix (in λ_0 and in meters)
 - (d) pitch angle (in degrees).
 - Assume spacing is $\lambda_0/40$.

a) Circular polarization
$$\Rightarrow$$
 wheeler helix
Per (10-28a), $C = \sqrt{25}\lambda = \sqrt{2}(\frac{1}{40})\Lambda$
 $C = 0.2236\lambda = 0.1676$ m

b) From Fig 10.13,
$$L_0 = \sqrt{C^2 + 5^2} = \sqrt{\frac{2\lambda^2}{40} + \frac{\lambda^2}{40^2}}$$

 $L_0 = 0.225\lambda = 0.16864m$

C) Note
$$L_n = NL_0 = 5(0.225 \, \lambda) = 5(0.16864)$$

 $L_n = 1.125 \, \lambda = 0.84319 \, m$

d) Per (10-24),
$$\alpha = \tan^{-1}(\frac{5}{6}) = \tan^{-1}(\frac{340}{0.22361})$$

$$\alpha = 6.3794^{\circ}$$