A thin lossless vertical 0.25λ monopole at the origin in free space is fed through an infinite ground (perfect electrical conductor) plane at z=0 with a feed current $I_0=1\angle0^\circ$ A. Determine the: (a) vector far-field phasor electric field, (b) vector far-field phasor magnetic field, (c) vector radiated time-average power density (Poynting vector), (d) radiation intensity, (e) power radiated, (f) maximum directivity (unitless & dBi), and (g) radiation resistance. [Hint: What would be the length ℓ of the image equivalent dipole?]

Free space
$$\Rightarrow 9 = 90 = 376.7303 D$$

a) Per notes, the fields for a monopole over a BEC ground plane are identical to the image equivalent dipole in the $2>0$ half space. For a 42 dipole

 $(4-84)$ $E_0 = \int 9 \frac{T_0}{2\pi r} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right]$
 $= \int 376.73 \frac{10^{\circ}}{2\pi} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right]$
 $E_{FF} = \hat{a}_{\theta} \int 59.9585 \frac{e^{\int Kr}}{r} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] V_{r}$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\sin \theta} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] V_{r} \right]$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\sin \theta} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] \left(\frac{N_2 \cos \theta}{\sin \theta} \right] \right]$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\sin \theta} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] \left(\frac{N_2 \cos \theta}{\sin \theta} \right) \right]$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\sin \theta} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] \left(\frac{N_2 \cos \theta}{\sin \theta} \right) \right]$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\sin \theta} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] \left(\frac{N_2 \cos \theta}{\sin \theta} \right) \right]$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\sin \theta} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] \left(\frac{N_2 \cos \theta}{\ln \theta} \right) \right]$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\sin \theta} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] \left(\frac{N_2 \cos \theta}{\ln \theta} \right) \right]$
 $= \int \frac{10^{\circ}}{2\pi} \left[\frac{e^{\int Kr}}{\cos(N_2 \cos \theta)} \left[\frac{\cos(N_2 \cos \theta)}{\sin \theta} \right] \left(\frac{N_2 \cos \theta}{\ln \theta} \right) \right]$

C)
$$er(2-8)$$
, $\overline{W}_{ave} = \frac{1}{8} Re\{\bar{E} \times \bar{H}^*\}$
 $\overline{W}_{ave} = \frac{1}{8} Re\{\hat{a}_{\theta} \le 59.96 \frac{e^{-jKr}}{r} \left[\frac{\cos(\frac{\pi}{k}\cos\theta)}{\sin\theta}\right]$
 $\times \hat{a}_{\theta}(-j) = 0.159 \frac{e^{+jKr}}{r} \left[\frac{\cos(\frac{\pi}{k}\cos\theta)}{\sin\theta}\right]^2$
 $= \frac{1}{8} Re\{\hat{a}_{r}(1) 9.54269 \frac{e^{\circ}}{r^{2}} \left[\frac{\cos(\frac{\pi}{k}\cos\theta)}{\sin\theta}\right]^2\}$
 $\overline{W}_{ave} = \hat{a}_{r} \frac{4.771345}{r^{2}} \left[\frac{\cos(\frac{\pi}{k}\cos\theta)}{\sin\theta}\right]^2 \left(\frac{W_{m^{2}}}{m^{2}}\right)$
 $= \frac{1}{8} \frac{1}{8}$

f) (2-16a)
$$D_{max} = \frac{4\pi U_{max}}{P_{rnd}}$$
 $U_{max} = U(\mathcal{V}_{2}) = 4.771345$
 $D_{max} = \frac{4\pi (4.771345)}{18.26975}$
 $D_{max} = 3.281845 = 5.1612 dBi$

(Note: 2.15 + 3.01 = 5.16 dBi)

 $0.5pole$ double, 10 log 2

g) (2-76) $P_{r} = \frac{1}{2} I_{2} I_{r}$
 $P_{r} = \frac{2P_{rad}}{15.1^{2}} = \frac{2(18.26975)}{|12|^{2}}$
 $P_{r} = 36.5395 \mathcal{I}$

(Note: 1/2 (73) = 36.5 n = 12 Dipole R1)