2.57 The input reactance of an infinitesimal linear dipole of length $\lambda / 60$ and radius $a=\lambda / 200$ is given by

$$
X_{i n} \simeq-120 \frac{[\ln (l / 2 a)-1]}{\tan (k l / 2)}
$$

Assuming the wire of the dipole is copper with a conductivity of $5.7 \times 10^{7} \mathrm{~S} / \mathrm{m}$, determine at $f=1 \mathrm{GHz}$ the
(a) loss resistance
(b) radiation resistance
(c) radiation efficiency
(d) VSWR when the antenna is connected to a 50 -ohm line

- with length of $\lambda / 50$ and radius of $\lambda / 250$. [Hint: look at Chapter 4.]
a) Since $l=\frac{1}{50}$, we can use the constant current approx.

$$
\text { Per } \begin{aligned}
(2-906), n_{L} & =n_{n f}=\frac{l}{p} \sqrt{\frac{\omega_{\mu_{0}}}{2 \sigma}}=\frac{\frac{\lambda}{50}}{2 \pi\left(\frac{1}{250}\right)} \sqrt{\frac{2 \pi\left(1 \times 10^{9}\right) 4 \pi \times 10^{-7}}{2\left(5.7 \times 10^{7}\right)}} \\
n_{L} & =0.00662266 \Omega=6.6227 \mathrm{~m} \Omega
\end{aligned}
$$

b) Use $(4-19)$ to get radiation resistance

$$
n_{r}=80 \pi^{2}\left(\frac{l}{\lambda}\right)^{2}=80 \pi^{2}\left(\frac{\lambda / 50}{\lambda}\right)^{2} \Rightarrow R_{r}=0.31583 \Omega
$$

C) Per (2-90), the radiation efficiency is

$$
e_{c d}=\frac{R_{r}}{R_{r}+\Lambda_{L}}=\frac{0.31583}{0.31583+0.0066}=0.97946=97.95 \%
$$

d)

$$
\begin{aligned}
& X_{\text {in }} \simeq-120 \frac{\ln \left(\frac{1 / 150}{2 \lambda_{250}}\right)-1}{\tan \left(\frac{2 \pi}{\lambda} \frac{1}{50} / 2\right)}=159.6624859 \Omega \\
& Z_{A N T}=R_{L}+R_{r}+j X_{\text {in }}=0.31583+0.0066227+j 159.66249 \sim \\
&=0.32245+j 159.6625 \sim \\
& \Gamma_{\text {ANT }}=\frac{z_{A N T}-Z_{0}}{Z_{A N T}+Z_{0}}=\frac{(0.32245+j 159.66)-50}{(0.32245+j 159.66)+50} \\
&=0.998948735\left(34.777^{\circ}\right. \\
& \text { USWR }=\frac{1+\left|\Gamma_{\text {ANT }}\right|}{1-\left|\Gamma_{\text {ANT }}\right|}=\frac{1+0.99885}{1-0.99885} \Rightarrow \frac{\text { Uswn }=1736.22}{(\text { essentially } \infty)}
\end{aligned}
$$

