
- 2.33 A uniform plane wave, of a form similar to (2-55), is traveling in the positive z-direction. Find the polarization (linear, circular, or elliptical), sense of rotation (CW or CCW), axial ratio (AR), and tilt angle τ (in degrees) when
 - (a) $E_x = E_y$, $\Delta \phi = \phi_y \phi_x = 0$ In all cases, justify the answer.
 - Assume $E_x = E_y = 1 \text{ V/m}$.
 - Also, write-out a time-domain equation for the electric field, plot the polarization ellipse w/ wave propagating into page, annotate RH/LH instead of CW/CCW, and find tilt angle with respect to the $+\mathcal{E}_{\nu}$ axis.

$$\overline{E} = \widehat{a}_{x} E_{x} \cos(\omega t - \kappa z + \phi_{x}) + \widehat{a}_{y} E_{y} \cos(\omega t - \kappa z + \phi_{y})$$

$$let E_{x} = E_{y} = 1 \text{ m and } \phi_{x} = \phi_{y} = 0$$

$$\overline{E} = \widehat{a}_{x} \cos(\omega t - \kappa z) + \widehat{a}_{y} \cos(\omega t - \kappa z) \frac{\forall}{m}$$

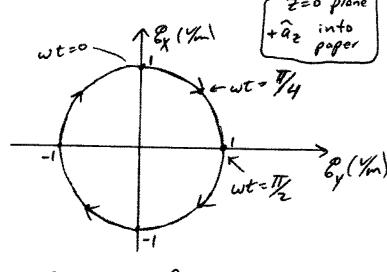
Linear Polarization

Sense NIA

AR = 00

Tilt angle 7 = 45° (By inspection)

- 2.33 A uniform plane wave, of a form similar to (2-55), is traveling in the positive z-direction. Find the polarization (linear, circular, or elliptical), sense of rotation (CW or CCW), axial ratio (AR), and tilt angle τ (in degrees) when (d) $E_x = E_y$, $\Delta \phi = \phi_y \phi_x = -\pi/2$ In all cases, justify the answer.
 - Assume $E_x = E_y = 1 \text{ V/m}$.
 - Also, write-out a time-domain equation for the electric field, plot the polarization ellipse w/ wave propagating into page, annotate RH/LH instead of CW/CCW, and find tilt angle with respect to the $+\mathcal{E}_{\nu}$ axis.


$$\frac{E}{(z,t)} = \hat{a}_{x} E_{x} \cos(\omega t - \kappa z + \phi_{x}) + \hat{a}_{y} E_{y} \cos(\omega t - \kappa z + \phi_{y})$$

$$|etting E_{x} = E_{y} = 1 / m, \ \phi_{x} = 0, \ \neq \phi_{y} = - \sqrt{2} \qquad \text{propagates}$$

$$\frac{E}{(z,t)} = \hat{a}_{x} \cos(\omega t - \kappa z) + \hat{a}_{y} \cos(\omega t - \kappa z - \sqrt{2}) / m$$

Evaluate \mathcal{E} ω z=0 for $0 \le \omega t < 2\pi$ $\mathcal{E}(0,t) = \hat{a}_x \cos(\omega t) + \hat{a}_y \cos(\omega t - \sqrt{2}) \frac{y}{m}$

Wt	Ex (%)	Ex (%
0	1	0
1/4	0,707	0.707
7/2	0	1
37/4	-0.707	0.707
11	-1	0
511/4	-0.707	-0.707
317	0	-1
77/	0.707	-0.707
/7		

Circular Polarization

RH sense AR = 1

Tilt angle T N/A for circle