EE 483/583 Antennas ..., 2_111_mod88F.docx

2.111 The effective antenna temperature of an antenna looking toward zenith is approximately 5 K. Assuming that the temperature of the transmission line (waveguide) is 72°F, find the effective temperature at the receiver terminals when the attenuation of the transmission line is 4 dB/100 ft and its length is

(a) 2 ft (b) 100 ft

Compare it to a receiver noise temperature of about 54 K.

• Modified so the transmission line temperature is 88°F and attenuation is 3 dB/100 ft. The effective antenna temperature incorporates both the antenna noise temperature as well as that due to the antenna physical temperature at the terminals.

Given effective antenna temperature = TA + TAP = 5 K
Given transmission line temp = To = 88°F = 304.261 k
Given trans. line attenuation constant =
$$\alpha = \frac{3dB}{rooft} \left(\frac{1MP}{20103_{0}e}\right)$$

= 0.003453878 MPA
Per (2-140), the effective antenna temperature at
the receiver terminals is
Ta = TA $e^{-2\alpha L}$ + TAP $e^{-2\alpha L}$ + To $(1 - e^{-2\alpha L})$
= $(TA + TAP)e^{-2\alpha L}$ + To $(1 - e^{-2\alpha L})$
A) When $L = 2 Ft$
Ta = $(5K)e^{-2(0.00345)2}$ + $304.261(1 - e^{-2(0.00345)2})$
Ta = $4.9314 + 4.17462 \Rightarrow Ta(L=2Ft) = 9.106 K$
 $much loss than Tr = 54K$
Ta = $(5K)e^{-2(0.00345)/00}$ + $304.261[1 - e^{-2(0.00345)/00}]$
= $2.50594 + 151.7693 \Rightarrow Ta(L=200ft) = 154.275 K$
much bigger than Tr = 54K