2.5 Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in radians and degrees, for the following normalized radiation intensities:

(d)
$$U(\theta) = \cos^2(\theta) \cos^2(3\theta)$$

(d)
$$U(\theta) = \cos^2(\theta) \cos^2(3\theta)$$
 $(0 \le \theta \le 90^\circ, 0 \le \phi \le 360^\circ)$

Using MathCAD, plot $U(\theta)$ below.

$$U(x) := (\cos(x))^2 \cdot (\cos(3 \cdot x))^2$$

$$\mathbf{n} := 0..900$$
 $\theta_{\mathbf{n}} := 0.1 \cdot \mathbf{n} \cdot \frac{\pi}{180}$

Using the graph as a starting point, find the angle θh where $U(\theta h) = 0.5$ by trial and error to determine the HPBW.

$$\theta$$
hdeg := 14.37252

$$\theta$$
hrad := θ hdeg $\cdot \frac{\pi}{180}$ $U(\theta$ hrad) = 0.5

$$U(\theta hrad) = 0.5$$

 $HPBW := 2 \cdot \theta hrad$

$$HPBW = 0.5017$$

radians

$$HPBW \cdot \frac{180}{\pi} = 28.74504$$

degrees

Using the graph as a starting point, find the angle θn where $U(\theta n) = 0$ by trial and error to determine the FNBW **OR** observe that $cos(3\theta)$ is zero when $3\theta = 90 \text{ deg } \& \theta = 30 \text{ deg}$.

$$\theta$$
ndeg := 30

$$\theta$$
nrad := θ ndeg $\cdot \frac{\pi}{180}$

$$U(\theta nrad) = 0$$

$$FNBW := 2 \cdot \theta nrad$$

$$FNBW = 1.0472$$

radians

$$FNBW \cdot \frac{180}{\pi} = 60$$

degrees