For a 50 Ω system, design a 4th-order, lumped-element, linear phase bandpass filter with a center frequency of 2.4 GHz and a bandwidth of 20% using the architecture of Fig. 8.25a. a) Determine the low-pass filter prototype element values. b) Draw a labeled sketch of the scaled and transformed filter with component values. c) Draw a labeled sketch of the filter in phasor form with $V_s = 1 \angle 0^\circ \text{ V}$. d) Plot the amplitude response $|V_L|$ in decibels with horizontal dashed lines at $20\log(0.5)$ & $20\log(0.5/\sqrt{2})$ and vertical dashed lines at $2.4 \pm 10\%$ GHz for $1 \le f \le 4$ GHz and $-25 \le |V_L| \le -5$ dB. Plot $\angle V_L$ (deg) for $1 \le f \le 4$ GHz with vertical dashed lines at $2.4 \pm 10\%$ GHz.

a) From Table 8.5, we get the immittances:

$$g_0 = g_5 = 1$$
 (resistors), $g_1 = 1.0598$ (capacitor), $g_2 = 0.5116$ (inductor), $g_3 = 0.3181$ (capacitor), and $g_4 = 0.1104$ (inductor).

N	<i>g</i> ₁	g 2	<i>g</i> ₃	g ₄	<i>g</i> ₅	g ₆	<i>g</i> 7	g ₈	g 9	g ₁₀	g ₁₁
1	2.0000	1.0000									
2	1.5774	0.4226	1.0000								
3	1.2550	0.5528	0.1922	1.0000							
4	1.0598	0.5116	0.3181	0.1104	1.0000						
5	0.9303	0.4577	0.3312	0.2090	0.0718	1.0000					
6	0.8377	0.4116	0.3158	0.2364	0.1480	0.0505	1.0000				
7	0.7677	0.3744	0.2944	0.2378	0.1778	0.1104	0.0375	1.0000			
8	0.7125	0.3446	0.2735	0.2297	0.1867	0.1387	0.0855	0.0289	1.0000		
9	0.6678	0.3203	0.2547	0.2184	0.1859	0.1506	0.1111	0.0682	0.0230	1.0000	
10	0.6305	0.3002	0.2384	0.2066	0.1808	0.1539	0.1240	0.0911	0.0557	0.0187	1.000

b) Given $\Delta = 0.2$ and $\omega_0 = 2\pi (2.4 \times 10^9)$ rad/s. Per Table 8.6 and using (8.64a) & (8.64b) for impedance scaling, each shunt capacitor in the prototype becomes a shunt L & C:

$$C_{1} = g_{1} = 1.0598 \text{ becomes:} \qquad L_{1}' = \frac{\Delta R_{0}}{\omega_{0} g_{1}} = \frac{0.2(50)}{(2\pi)2.4 \times 10^{9}(1.0598)} \implies \underline{L_{1}' = 0.626 \text{ nH}}.$$

$$\text{and } C_{1}' = \frac{g_{1}}{\omega_{0} \Delta R_{0}} = \frac{1.0598}{(2\pi)2.4 \times 10^{9}(0.2)50} \implies \underline{C_{1}' = 7.028 \text{ pF}}.$$

$$C_{3} = g_{3} = 0.3181 \text{ becomes:} \qquad L_{3}' = \frac{\Delta R_{0}}{\omega_{0} g_{3}} = \frac{0.2(50)}{(2\pi)2.4 \times 10^{9}(0.3181)} \implies \underline{L_{3}' = 2.085 \text{ nH}}.$$

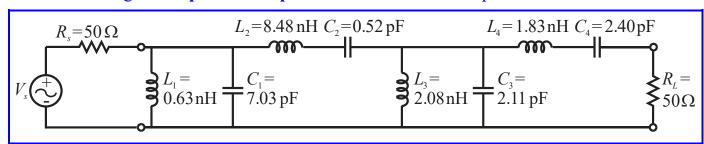
$$\text{and } C_{3}' = \frac{g_{3}}{\omega_{0} \Delta R_{0}} = \frac{0.3181}{(2\pi)2.4 \times 10^{9}(0.2)50} \implies \underline{C_{3}' = 2.109 \text{ pF}}.$$

 \triangleright Per Table 8.6 and using (8.64a) & (8.64b) for impedance scaling, each series inductor in the prototype becomes a series L & C:

$$L_{2} = g_{2} = 0.5116 \text{ becomes:} \qquad L_{2}' = \frac{g_{2} R_{0}}{\omega_{0} \Delta} = \frac{0.5116(50)}{(2\pi)2.4 \times 10^{9}(0.2)} \implies \underline{L_{2}' = 8.482 \text{ nH}}.$$
and $C_{2}' = \frac{\Delta}{\omega_{0} g_{2} R_{0}} = \frac{0.2}{(2\pi)2.4 \times 10^{9}(0.5116)50} \implies \underline{C_{2}' = 0.518 \text{ pF}}.$

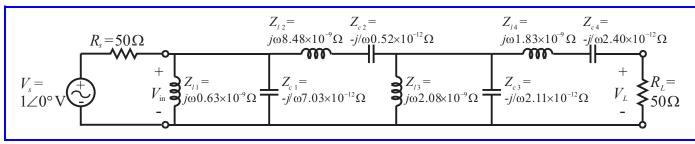
$$L_4 = g_4 = 0.1104 \text{ becomes:} \qquad L_4' = \frac{g_4 R_0}{\omega_0 \Delta} = \frac{0.1104 (50)}{(2\pi)2.4 \times 10^9 (0.2)} \implies \underline{L_4' = 1.830 \text{ nH}}.$$
and $C_4' = \frac{\Delta}{\omega_0 g_4 R_0} = \frac{0.2}{(2\pi)2.4 \times 10^9 (0.1104)50} \implies \underline{C_4' = 2.403 \text{ pF}}.$

- Per (8.64c), the source resistance $R_S = g_0$ becomes: $R_S' = R_0 g_0 = (50)1$ \Rightarrow $R_S' = 50 Ω$.
- \triangleright Per (8.64d), the load resistance $R_L = g_5$ becomes: $R'_L = R_0 g_5 = 50(1)$ \Rightarrow $R_L' = 50 Ω$.
- The resulting **linear phase bandpass** filter circuit with component values is:



c) From circuits, use $Z_R = R$, $Z_L = j\omega L$, and $Z_C = -j/\omega C$.

The resulting linear phase bandpass filter circuit in phasor form is:



Ω

d) Using MathCAD

$$Z0 := 50$$

$$n := 100..400$$
 $f_n := n \cdot 10^7$

$$f_n := n \cdot 10$$

Linear phase lumped element design
$$N = 4$$

fc :=
$$2.4 \cdot 10^9$$
 Hz $\Delta := 0.2$

$$\Delta := 0.2$$

Table 8.3 LPF prototype
$$g0 := 1$$
 $g1 := 1.0598$ $g2 := 0.5116$ $g3 := 0.3181$

$$g0 := 1$$

$$g1 := 1.0598$$

$$\mathfrak{z}^2 := 0.5116$$

$$g4 := 0.1104$$

$$g5 := 1$$

$$g4 := 0.1104$$
 $g5 := 1$ $RS := g0 \cdot Z0$

$$RL := Z0 \cdot g5$$

parallel L & C

$$L1 := \frac{\Delta \cdot Z0}{2 \cdot \pi \cdot fc \cdot g1}$$

$$C1 := \frac{g1}{Z0 \cdot \Delta \cdot 2\pi \cdot fc}$$

$$L2 := \frac{g2 \cdot Z0}{2 \cdot \pi \cdot fc \cdot \Delta}$$

$$L1 := \frac{\Delta \cdot Z0}{2 \cdot \pi \cdot fc \cdot g1} \qquad C1 := \frac{g1}{Z0 \cdot \Delta \cdot 2\pi \cdot fc} \qquad L2 := \frac{g2 \cdot Z0}{2 \cdot \pi \cdot fc \cdot \Delta} \qquad C2 := \frac{\Delta}{Z0 \cdot g2 \cdot 2\pi \cdot fc}$$

$$L3 := \frac{\Delta \cdot Z0}{2 \cdot \pi \cdot fc \cdot g3}$$

$$L3 := \frac{\Delta \cdot Z0}{2 \cdot \pi \cdot \text{fe} \cdot \text{g3}} \qquad C3 := \frac{\text{g3}}{Z0 \cdot \Delta \cdot 2\pi \cdot \text{fe}} \qquad L4 := \frac{\text{g4} \cdot Z0}{2 \cdot \pi \cdot \text{fe} \cdot \Delta} \qquad C4 := \frac{\Delta}{Z0 \cdot \text{g4} \cdot 2\pi \cdot \text{fe}}$$

Η

$$L4 := \frac{g4 \cdot Z0}{2 \cdot \pi \cdot fc \cdot \Delta}$$

$$C4 := \frac{\Delta}{Z0 \cdot g4 \cdot 2\pi \cdot f}$$

$$VS := 1 \ V \ RS = 50$$

$$RS = 50$$

$$RL = 50$$

$$\Omega$$

$$L1 = 6.257 \times 10^{-10}$$
 H

$$C1 = 7.028 \times 10^{-12}$$
 F

$$L2 = 8.482 \times 10^{-9}$$

$$C2 = 5.185 \times 10^{-13}$$
 F

$$L3 = 2.085 \times 10^{-9}$$

H
$$C3 = 2.109 \times 10^{-12}$$
 F

$$L4 = 1.83 \times 10^{-9}$$
 H

$$C4 = 2.403 \times 10^{-12}$$
 F

Series impedance of RL, C4, & L4

$$Z1(f) := RL + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot C4)} + j \cdot 2 \cdot (\pi \cdot f \cdot L4)$$

Parallel impedance of Z1, L3, & C3

$$Z2(f) := \left[\frac{1}{Z1(f)} + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot L3)} + j \cdot 2 \cdot \pi \cdot f \cdot C3\right]^{-1}$$

Series impedance of L2, C2, & Z2

$$Z3(f) := j \cdot 2 \cdot \pi \cdot f \cdot L2 + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot C2)} + Z2(f)$$

Input impedance of BPF filter w/ load

$$Zin(f) := \left[\frac{1}{Z3(f)} + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot L1)} + j \cdot 2 \cdot \pi \cdot f \cdot C1\right]^{-1}$$

Voltage divisions to get Vin & VRL

$$Vin(f) := VS \cdot \frac{Zin(f)}{RS + Zin(f)}$$

$$VZ2(f) := Vin(f) \cdot \frac{Z2(f)}{Z3(f)}$$

$$VRL(f) := VZ2(f) \cdot \frac{RL}{Z1(f)}$$

d) cont.

$$VIN_{n} := Vin(f_{n}) \quad VL_{n} := VRL(f_{n}) \quad VL_{dB_{n}} := 20 \cdot log(|VL_{n}|) \quad VLdeg_{n} := arg(VL_{n}) \cdot \frac{180}{\pi}$$

$$vertL := \begin{pmatrix} 2.16 \cdot 10^{9} \\ 2.16 \cdot 10^{9} \end{pmatrix} \quad vertH := \begin{pmatrix} 2.64 \cdot 10^{9} \\ 2.64 \cdot 10^{9} \end{pmatrix} \quad vert := \begin{pmatrix} -5 \\ -25 \end{pmatrix} \quad vertd := \begin{pmatrix} 180 \\ -180 \end{pmatrix}$$

$$VL_{dB_{n}} \quad -10$$

$$VL_{dB_{n}} \quad -10$$

$$vert \cdot VL_{dB_{n}} \quad -10$$

$$vert \cdot VL_{dB_{$$

Note: The linear phase BPF has NOT rolled off 3 dB at $f_c = 2.4 \pm 10\%$ GHz.