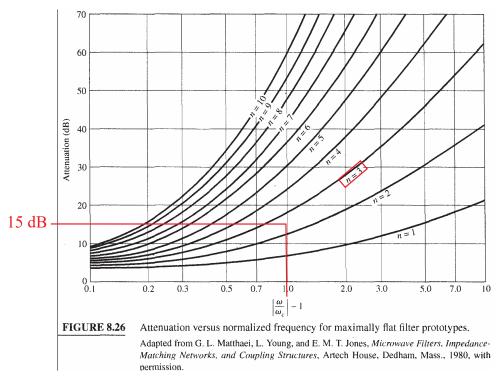
For a 50 Ω system, design a lumped-element, Butterworth high-pass filter with a cut-off frequency of 2.4 GHz with an attenuation of at least 15 dB at 1.2 GHz using the architecture of Fig. 8.25a. a) Determine the filter order N and the low-pass filter prototype element values. b) Draw a labeled sketch of the scaled and transformed filter with component values. c) Draw a labeled sketch of the filter in phasor form with $V_s = 1 \angle 0^\circ \text{ V}$. d) Plot the amplitude response $|V_L|$ in decibels with horizontal dashed lines at $20\log(0.5/\sqrt{2})$ and a vertical dashed line at 2.4 GHz for $0 \le f \le 5$ GHz & -25 dB $\le |V_L| \le 0$.

a) Since ω is at $0.5\omega_c$ for the HPF, calculate normalized frequency for LPF prototype at $2\omega_c$ $|\omega/\omega_c| - 1 = |2\omega_c/\omega_c| - 1 = 1$. From Figure 8.26, we see that an LP prototype filter of order N=3 is needed to meet the 15 dB attenuation specification.



From Table 8.3, we get the immittances:

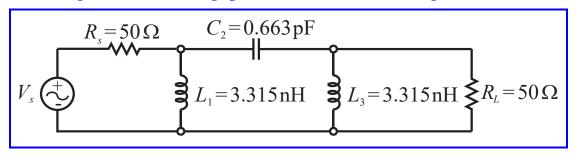
 $g_0 = g_4 = 1$ (resistors), $g_1 = g_3 = 1.0000$ (capacitors), and $g_2 = 2.0000$ (inductor).

N	g_1	g 2	<i>g</i> ₃	g 4	g ₅	<i>g</i> ₆	g 7	g ₈	g 9	g 10	g ₁₁
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

b) For filter architecture of Fig 8.25a, use the immittances & equations (8.64cd), & (8.70ab) to get necessary scaled & transformed shunt inductances and series capacitances:

Per (8.70b),
$$L'_1 = L'_3 = \frac{R_0}{\omega_c C_k} = \frac{R_0}{\omega_c g_1} = \frac{50}{(2\pi)2.4 \times 10^9 (1)}$$
 $\Rightarrow \underline{L_1' = L_3' = 3.315 \text{ nH}}.$
Per (8.70a), $C'_2 = \frac{1}{R_0 \omega_c L_k} = \frac{1}{R_0 \omega_c g_2} = \frac{1}{50(2\pi)2.4 \times 10^9 (2)}$ $\underline{C_2' = 0.663 \text{ pF}}.$
Per (8.64d), $R'_1 = R_0 R_1 = R_0 g_4 = 50(1)$ $\Rightarrow \underline{R_L' = 50 \Omega}.$

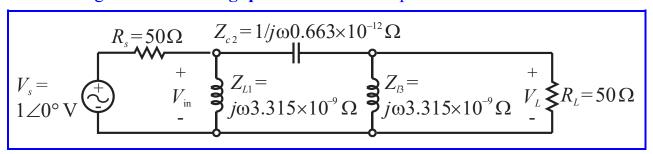
> The resulting **Butterworth highpass** filter circuit with component values is:



c) From circuits, use $Z_R = R$, $Z_L = j\omega L$, and $Z_C = 1/j\omega C$.

Per (8.64c), $R'_S = R_0 = 50$

The resulting **Butterworth highpass** filter circuit in phasor form is:



d) Using MathCAD

System impedance

$$Z0 := 50$$
 Ω
 $n := 1...500$
 $f_n := n \cdot 10^7$

 Butterworth lumped element design $N = 3$
 fc := 2.4 · 10⁹
 Hz

 Table 8.3 LPF prototype
 $g0 := 1$
 $g1 := 1$
 $g2 := 2$
 $g3 := g1$
 $g4 := 1$

 RS := $g0 \cdot Z0$
 L1 := $\frac{Z0}{2 \cdot \pi \cdot fc \cdot g1}$
 C2 := $\frac{1}{Z0 \cdot g2 \cdot 2\pi \cdot fc}$
 L3 := L1
 RL := $Z0 \cdot g4$

 VS := 1
 V
 RS = 50
 Ω
 L1 = 3.31573×10^{-9}
 H

 C2 = 6.63146×10^{-13}
 F
 L3 = 3.31573×10^{-9}
 H
 RL = 50
 Ω

Parallel impedance of RL & C3
$$Z1(f) := \left[\frac{1}{RL} + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot L3)}\right]^{-1}$$
 Series impedance of L2 & Z1
$$Z2(f) := \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot C2)} + Z1(f)$$
 Input impedance of LP filter w/ load
$$Zin(f) := \left[\frac{1}{Z2(f)} + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot L1)}\right]^{-1}$$
 Voltage divisions to get Vin & Vld
$$Vin(f) := VS \cdot \frac{Zin(f)}{RS + Zin(f)} \quad Vld(f) := Vin(f) \cdot \frac{Z1(f)}{Z2(f)}$$
 VlN_n := Vin(f_n)
$$VL_n := Vin(f_n) \quad VL_n := Vid(f_n) \quad VL_n dB_n := 20 \cdot log(\left|VL_n\right|)$$
 vert24 :=
$$\begin{pmatrix} 0 \\ -25 \end{pmatrix} \quad vertf := \begin{pmatrix} 2.4 \cdot 10^9 \\ 2.4 \cdot 10^9 \end{pmatrix}$$

$$\frac{VL_dB_n}{20 \cdot log(0.5 \cdot 0.7071)}$$
 vert24
$$\frac{VL_dB_n}{20 \cdot log(0.5 \cdot 0.7071)}$$
 vert24
$$\frac{VL_n dB_n}{20 \cdot log(0.5 \cdot 0.7071)}$$