- 8.16 Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz and a fifth-order 0.5 dB equal-ripple response. Assume $R_0 = 50 \Omega$, $Z_{\ell} = 15 \Omega$, and $Z_h = 120 \Omega$. (a) Find the required electrical lengths of the five sections
- First, find and draw fully-labeled sketch of low-pass filter prototype circuit (use form shown in Fig. 8.25a). Also, specify the impedance associated with each section. CAD part is not required.
- From Table 8.4, we get immittances: $g_0 = 1$, $g_1 = g_5 = 1.7058$, $g_2 = g_4 = 1.2296$, $g_3 = 2.5408$ and $g_6 = 1$ (matched).

TABLE 8.4		Elem 1, N	Element Values for Equal-Ripple Low-Pass Filter 1, $N = 1$ to 10, 0.5 dB ripple)						Prototypes $(g_0 = 1), \omega_c =$		
0.5 dB Ripple											
N	g 1	g2	g 3	g 4	85	- g 6	g 7	g 8	g 9	g 10	g 11
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841			2					
3	1.5963	1.0967	1.5963	1.0000		-					
4	1.6703	1.1926	2.3661	0.8419	1.9841	-					
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

 \blacktriangleright For the filter architecture of Fig 8.25a, we have

$$\overline{V}_{s} \bigoplus^{+} C_{1} = 1.7058 \text{ F} + C_{3} = 2.5408 \text{ F} + C_{5} = 1.7058 \text{ F} + C_{L} = 1.\Omega$$

 \blacktriangleright Using the immittances, Z_0 , Z_ℓ , & Z_h , & eq'ns (8.86a) & (8.86b), the electrical lengths are:

For $C_1 = C_5 = 1.7058$ F, use $\underline{Z}_{\ell} = 15 \Omega$ and sections with electrical length \Rightarrow

$$\beta \ell_1 = \beta \ell_5 = \frac{CZ_{\ell}}{R_0} = \frac{g_1 Z_{\ell}}{R_0} = \frac{1.7058(15)}{50} \Longrightarrow \frac{\beta \ell_1 = \beta \ell_5 = 0.51174 \text{ rad} = 29.32^\circ}{50}$$

For
$$L_2 = L_4 = 1.2296$$
 H, use $\underline{Z_h = 120 \Omega}$ and sections with electrical length \Rightarrow
 $\beta \ell_2 = \beta \ell_4 = \frac{L R_0}{Z_h} = \frac{g_2 R_0}{Z_h} = \frac{1.2296(50)}{120} \Rightarrow \underline{\beta \ell_2} = \beta \ell_4 = 0.5123 \text{ rad} = 29.35^\circ$

For $C_3 = 2.5408$ F, use $Z_{\ell} = 15 \Omega$ and a section with electrical length \Rightarrow

$$\beta \ell_3 = \frac{C Z_{\ell}}{R_0} = \frac{g_3 Z_{\ell}}{R_0} = \frac{2.5408(15)}{50} \Longrightarrow \frac{\beta \ell_3 = 0.76224 \text{ rad} = 43.67^\circ}{50}$$

All are less than 45 degrees!