8.13 Design a low-pass, fourth-order, maximally flat filter using only shunt stubs. The cutoff frequency is 8 GHz and the impedance is 50 Ω . Use CAD to plot the insertion loss versus frequency.

a) Find and make fully-labeled sketch of low-pass filter prototype circuit (use form shown in Fig. 8.25b with Thevenin equivalent source). b) Use Richards' Transformation to implement low-pass filter prototype using stubs and draw fullylabeled sketch of resulting circuit. c) Add unit element to the lefthand side, sketch resulting circuit, apply Kuroda identity, & sketch resulting circuit. d) Add a unit element to the righthand side by load, sketch resulting circuit, apply Kuroda identity, & sketch resulting circuit. e) Add a unit element to the righthand side by load (again), sketch resulting circuit, apply Kuroda identity to each of the two resulting short-circuit stub & unit element combinations, and sketch resulting circuit. [Normalized design should now only have shunt open-circuit stubs.] f) Scale all impedances to a 50 Ω system and draw a fully-labeled sketch of final design. For all steps, the lengths ℓ may be left in terms of λ at f_c . CAD part is not required.

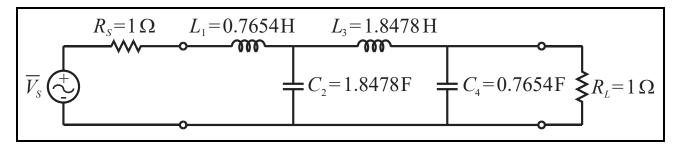
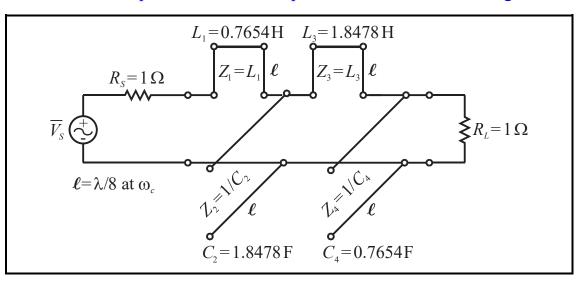
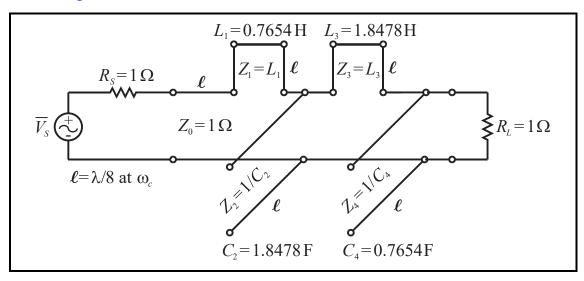
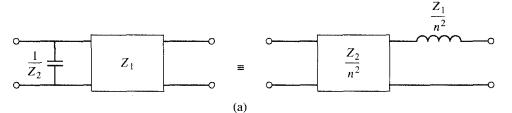

a) From Table 8.3, the immittances are $\underline{g_1 = g_4 = 0.7654}$, $\underline{g_2 = g_3 = 1.8478}$, & $\underline{g_0 = g_5 = 1}$ (matched).

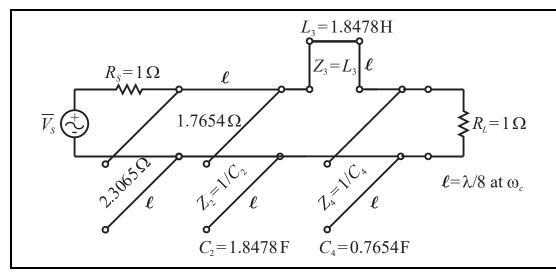
TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10)

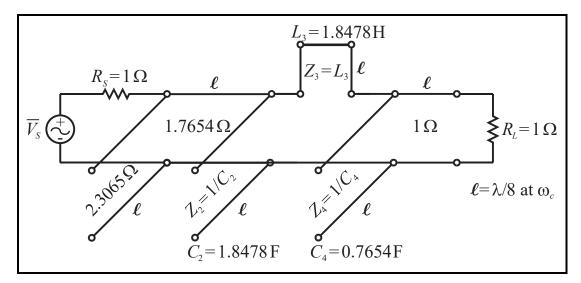

g 6 g 7	<i>g</i> 8	g 9	g 10	g 11
0000				
5176 1.000	00			
2470 0.445	50 1.0000			
6629 1.111	11 0.3902	1.0000		
8794 1.532	21 1.0000	0.3473	1.0000	
9754 1.782	20 1.4142	0.9080	0.3129	1.0000
ç		9754 1.7820 1.4142	9754 1.7820 1.4142 0.9080	9754 1.7820 1.4142 0.9080 0.3129

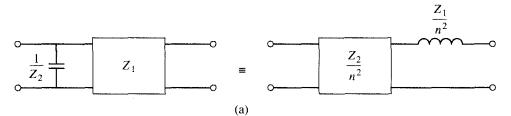
Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, *Microwave Filters, Impedance-Matching Networks, and Coupling Structures*, Artech House, Dedham, Mass., 1980, with permission.

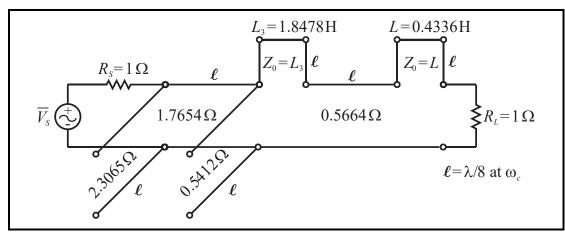

> For the filter architecture of Fig 8.25b, we get a LP prototype:

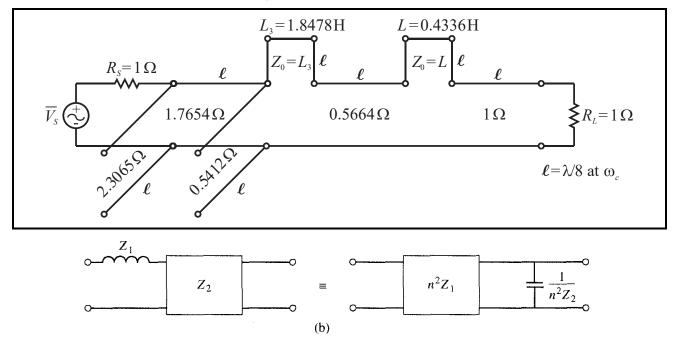

b) Using Richards' transformation (Fig. 8.34), we make the series inductors into series short circuit stubs & shunt capacitors into shunt open circuit stubs, both of length $\ell = \lambda/8$ @ ω_c .


c) Add unit element to the lefthand side, sketch resulting circuit, apply Kuroda identity, & sketch resulting circuit.

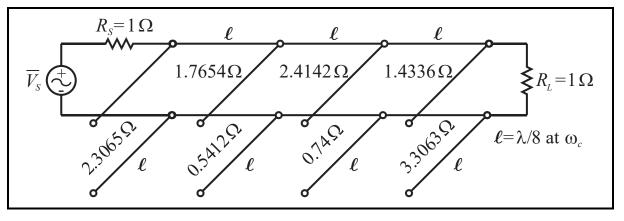

For LH unit element w/ series inductive SC stub combination, use Kuroda identity (a), let $Z_1/n^2 = 0.7654 \Omega$, $Z_2/n^2 = 1 \Omega$, and $n^2 = 1 + Z_2/Z_1 = 1 + 1/0.7654 = 2.3065$. Therefore, we will get a TL section with impedance $Z_1 = n^2(Z_1/n^2) = 2.3065(0.7654) = 1.7654 \Omega$ and a shunt capacitor of $1/Z_2 = 1/[n^2 (Z_2/n^2] = 1/(2.3065*1) = 0.4336$ F. In turn, this shunt capacitor becomes a shunt OC stub of impedance $Z_0 = 1/C = 1/0.4336 = 2.3065 \Omega$.


\succ This results in the circuit:

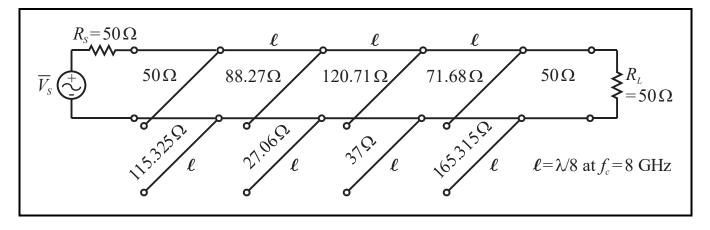

d) Add a unit element to the righthand side by load, sketch resulting circuit, apply Kuroda identity, & sketch resulting circuit.


➢ For the RH shunt capacitive OC stub (C₄ = 1/Z₄ = 0.7654 F) w/ 1 Ω unit element combination, let C₄ = 1/Z₂ = 0.7654 F, Z₁ = 1 Ω, and n² = 1 + Z₂/Z₁ = 1 + 0.7654⁻¹/1 = 2.3065 for Kuroda identity (a). Therefore, we will get a TL section with impedance $Z_2/n^2 = 0.7654^{-1}/2.3065 = 0.5664 \Omega$ and a series inductor of $L = Z_1/n^2 = 1/2.3065 = 0.4336$ H. In turn, this series inductor becomes a series SC stub of impedance $Z_0 = L = 0.4336 \Omega$.

> This results in the circuit:



e) Add a unit element to the righthand side by load (again), sketch resulting circuit, apply Kuroda identity (b) to each of the two resulting short-circuit stub & unit element combinations, and sketch resulting circuit.



- For middle series inductive SC stub ($L_3 = Z_0 = 1.8478 \ \Omega$) w/ 0.5664 Ω unit element combination, use Kuroda identity (b) with $Z_1 = 1.8478 \text{ H}$, $Z_2 = 0.5664 \Omega$, & $n^2 = 1 + Z_2/Z_1$ = 1 + 0.5664/1.8478 = 1.3065. Therefore, we get a TL section with impedance $n^2Z_1 =$ $1.3065(1.8478) = 2.4142 \Omega$ and shunt capacitor $1/(n^2Z_2) = 1/(1.3065*0.5664) = 1.3513 \text{ F}$. This shunt capacitor becomes a shunt OC stub of impedance $Z_0 = 1/C = 1/1.3513 =$ 0.7400Ω .
- ► For RH series inductive SC stub ($L = Z_0 = 0.4336 \ \Omega$) w/ 1 Ω unit element combination, use Kuroda identity (b) with $Z_1 = 0.4336$ H, $Z_2 = 1 \ \Omega$, & $n^2 = 1 + Z_2/Z_1 = 1 + 1/0.4336 =$ 3.3063. Therefore, we get a TL section w/ impedance $n^2Z_1 = 3.3063(0.4336) = 1.4336 \ \Omega$ and shunt capacitor of $1/(n^2Z_2) = 1/(3.3063*1) = 0.30245$ F. In turn, this shunt capacitor becomes a shunt OC stub of impedance $Z_0 = 1/C = 1/0.30245 = 3.3063 \ \Omega$.

> This results in the circuit:

- f) Scale all impedances to a 50 Ω system and draw a fully-labeled sketch of final design.
 - Multiply all impedances by 50 to impedance scale. Added 50 Ω sections (no specified length) at both ends for connectivity.

