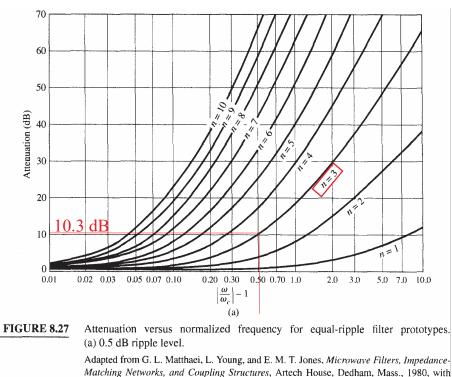
- **8.10** Design a three-section bandstop lumped-element filter with a 0.5 dB equal-ripple response, a bandwidth of 10% centered at 3 GHz, and an impedance of 75 Ω . What is the resulting attenuation at 3.1 GHz? Use CAD to plot the insertion loss versus frequency.
 - Also, draw labeled sketch of design. Normalize passband to 0 dB.

> Per (8.75),
$$\Delta \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^{-1} = 0.1 \left(\frac{3.1}{3} - \frac{3}{3.1}\right)^{-1} = 1.5246$$
 is the equivalent LP prototype

frequency where $\omega_c = 1$ rad/s for this bandstop filter.

permission.

Calculate $|\omega/\omega_c| - 1 = |1.5246/1| - 1 = 0.5246$. From Figure 8.27a, we see that a LP prototype filter of order <u>N = 3</u> has an <u>expected attenuation of ~10.3 dB</u>.



> From Table 8.4, we get immittances: $g_1 = g_3 = 1.5963$, $g_3 = 1.0967$, and $g_4 = 1$ (matched).

	1, $N = 1$ to 10, 0.5 dB ripple)										
0.5 dB Ripple											
N	g 1	<i>g</i> ₂	g 3	g 4	85	g 6	g 7	<i>g</i> 8	g 9	g 10	g ₁₁
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841		_						
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000	-				
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

TABLE 8.4Element Values for Equal-Ripple Low-Pass Filter Prototypes $(g_0 = 1, \omega_c = 1, N = 1 \text{ to } 10, 0.5 \text{ dB ripple})$

▶ For the filter architecture of Fig 8.25a, the necessary scaled & transformed LP shunt capacitors become a series *LC* using immittances $g_1 = g_3$, equations (8.76c) & (8.76d) for transformed *L* & *C*, and (8.64a) & (8.64b) for impedance scaling:

$$g_{1} = 1.5963 \Rightarrow$$

$$L'_{1} = L'_{3} = \frac{R_{0}}{\omega_{0}\Delta L_{k}} = \frac{R_{0}}{\omega_{0}\Delta g_{1}} = \frac{75}{(2\pi)3 \times 10^{9}(0.1)1.5963} \Rightarrow \underline{L'_{1}} = \underline{L'_{3}} = 24.9256 \text{ nH}$$

$$C'_{1} = C'_{3} = \frac{\Delta C_{k}}{\omega_{0}R_{0}} = \frac{\Delta g_{1}}{\omega_{0}R_{0}} = \frac{0.1(1.5963)}{(2\pi)3 \times 10^{9}(75)} \Rightarrow \underline{C'_{1}} = C'_{3} = 0.1129 \text{ pF}$$

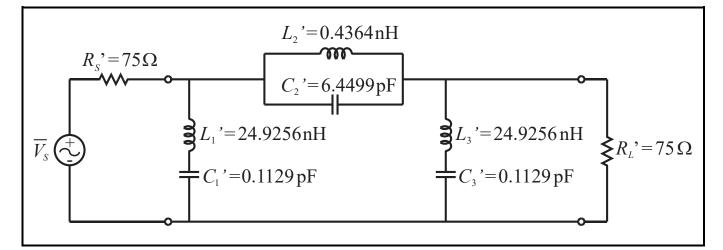
For the filter architecture of Fig 8.25a, the necessary scaled & transformed LP series inductor becomes a parallel *LC* using immittance g_2 , equations (8.76a) & (8.76b) for transformed *L* & *C*, and (8.64a) & (8.64b) for impedance scaling:

$$g_{2} = 1.0967 \implies L'_{2} = \frac{\Delta L_{k}R_{0}}{\omega_{0}} = \frac{\Delta g_{2}R_{0}}{\omega_{0}} = \frac{0.1(1.0967)75}{(2\pi)3 \times 10^{9}} \implies \underline{L'_{2}} = 0.4364 \text{ nH}$$

$$C'_{2} = \frac{1}{\omega_{0}\Delta L_{k}R_{0}} = \frac{1}{\omega_{0}\Delta g_{2}R_{0}} = \frac{1}{(2\pi)3 \times 10^{9}(0.1)1.0967(75)} \implies \underline{C'_{2}} = 6.4499 \text{ pF}$$

$$\Rightarrow \text{ Per (8.64d), } g_{4} = 1 \implies R'_{L} = R_{0}R_{L} = R_{0}g_{6} = 50(1) \implies \underline{R'_{L}} = 50 \Omega.$$

- > Further, the source resistance per (8.64c) is: $R'_{s} = R_{0} \implies \underline{R'_{s}} = 50 \ \Omega$.
- > The resulting **<u>bandstop</u>** filter circuit is:



See MathCad on next page for actual <u>filter attenuation of 10.897 dB</u> at 3.1 GHz which is a bit better than the predicted 10.3 dB.

Define constants

$$VS := 1 \quad V \qquad RS := 75 \quad \Omega \quad RL := 75 \quad \Omega \quad fc := 3 \cdot 10^{9} \quad Hz$$

$$C1 := 0.1129 \cdot 10^{-12} \quad F \qquad C3 := C1 \qquad L1 := 24.9256 \cdot 10^{-9} \quad H \qquad L3 := L1$$

$$C2 := 6.4499 \cdot 10^{-12} \quad F \qquad L2 := 0.4364 \cdot 10^{-9} \quad H$$
Parallel RL//(ZC3+ZL3)
$$Z1(f) := \left[\frac{1}{RL} + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot L3) + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot C3)}}\right]^{-1}$$
Series (ZC2//ZL2) + Z1
$$Z2(f) := \left(\frac{1}{j \cdot 2 \cdot \pi \cdot f \cdot L2} + j \cdot 2 \cdot \pi \cdot f \cdot C2\right)^{-1} + Z1(f)$$
Parallel Z2//(ZC1+ZL1)
$$Zin(f) := \left[\frac{1}{Z2(f)} + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot L1) + \frac{1}{(j \cdot 2 \cdot \pi \cdot f \cdot C1)}}\right]^{-1}$$
Voltage division to get Vld
$$Vld(f) := VS \cdot \frac{Zin(f)}{RS + Zin(f)} \cdot \frac{Z1(f)}{Z2(f)}$$

$$n := 1 .. 6000 \quad f_n := n \cdot 10^6 \quad VL_n := Vld(f_n) \quad VLdeg_n := arg(VL_n) \cdot \frac{180}{\pi}$$

$$VLdB_n := 20 \cdot log(|VL_n|) \quad IL_n := VLdB_n - 10 \cdot log(0.25) \quad IL_{3100} = -10.897 \quad dB$$

 f_{n}, f_{3100}