
- 8.7 Design a low-pass, maximally flat lumped-element filter having a passband of 0–2 GHz, and an attenuation of at least 20 dB at 3.4 GHz. The characteristic impedance is 50 Ω . Use CAD to plot the insertion loss versus frequency.
- Also, draw labeled sketch of design. CAD- Use MathCad, Matlab, ... to plot insertion loss versus frequency. Normalize passband to 0 dB.
- Calculate $|\omega/\omega_c| 1 = |3.4/2| 1 = 0.7$. From Figure 8.26, we see that a LP filter of order <u>N = 5</u> is needed to meet the 20 dB attenuation specification.

> From Table 8.3, we get the immittances: $g_1 = g_5 = 0.618$, $g_2 = g_4 = 1.618$, $g_3 = 2$, and $g_6 = 1$ (matched).

TABLE 8.3Element Values for Maximally Flat Low-Pass Filter Prototypes $(g_0 = 1, \omega_c = 1, N = 1 \text{ to } 10)$

N	g 1	<i>g</i> ₂	<i>g</i> 3	g 4	g 5	g 6	g 7	g 8	g 9	g 10	g 11
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000
	•			tthaei, L. es, Artech	0					pedance-N	Matching [Variable]

EE 481/581 Microwave Engineering, 8_07.docx

For the filter architecture of Fig 8.25a, we get the necessary scaled shunt capacitances and series inductances using the immittances and equations (8.64d) (8.67a), and (8.67b):

$$g_1 = g_5 = 0.618 \implies C_1' = C_5' = \frac{C_k}{R_0 \omega_c} = \frac{g_1}{R_0 \omega_c} = \frac{0.618}{50(2\pi)2 \times 10^9} \implies \frac{C_1' = C_5' = 0.9836 \text{ pF}}{C_1' = C_5' = 0.9836 \text{ pF}}$$

$$g_2 = g_4 = 1.618 \quad \Rightarrow \quad L_2 = L_4 = \frac{R_0 L_k}{\omega_c} = \frac{R_0 g_2}{\omega_c} = \frac{50(1.618)}{(2\pi)2 \times 10^9} \quad \Rightarrow \quad \underline{L_2} = L_4 = 6.4378 \text{ nH}$$

$$g_3 = 2 \implies C'_3 = \frac{C_3}{R_0 \omega_c} = \frac{g_3}{R_0 \omega_c} = \frac{2}{50(2\pi)2 \times 10^9} \implies \frac{C'_3 = 3.1831 \text{ pF}}{.1831 \text{ pF}},$$

and, per (8.64d), $g_6 = 1 \implies R_L = R_0 R_L = R_0 g_6 = 50(1) \implies R_L = 50 \Omega$.

- > Further, the source resistance per (8.64c) is: $R_{s}' = R_{0} \implies \underline{R_{s}'} = 50 \ \Omega$.
- > The resulting LP filter circuit is:

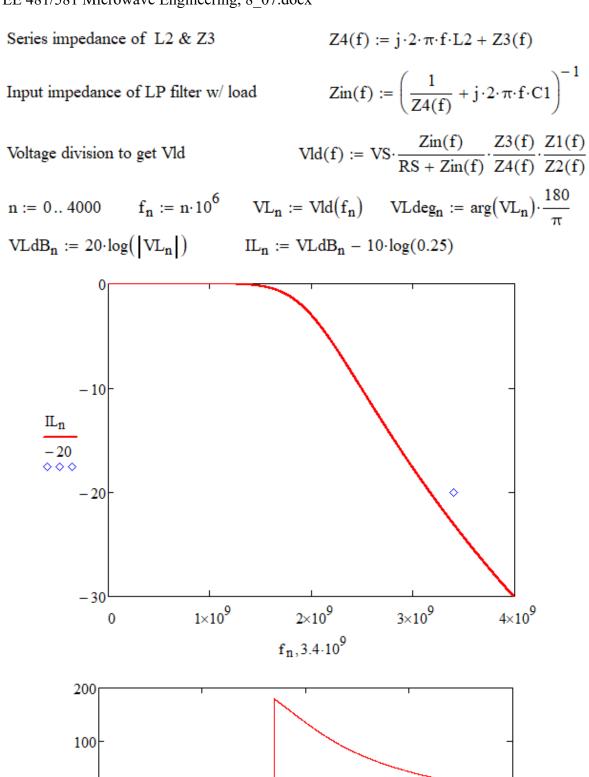
$$\overline{V_{s}} \xleftarrow{+} C_{1}'=0.9836 \,\mathrm{pF} + C_{3}'=3.1831 \,\mathrm{pF} + C_{5}'=0.9836 \,\mathrm{pF} + R_{L}'=50 \,\Omega$$

> MathCad was used to calculate the filter response as shown on the following page.

▶ Note that the insertion loss is less than -20 dB at 3.4 GHz (blue diamond).

Define constants

Г


VLdegn

0

-100

-200

0

2×10⁹

3×10⁹

4×10⁹

1×10⁹