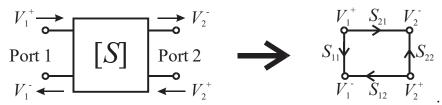
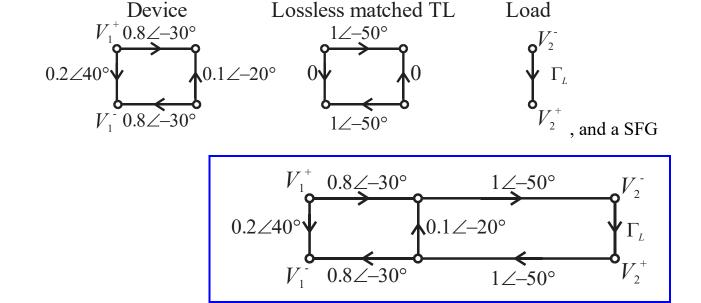

A 2-port device, characterized by $[S_{\text{dev}}]$, is connected by a lossless matched transmission line (TL) to load with a reflection coefficient Γ_L as shown. a) Find the S-parameters of the TL $[S_{\text{TL}}]$ if its electrical length is 50°. b) Create a signal flow graph (SFG) for this problem. c) Find the reflection coefficient $\Gamma_1 = \frac{V_1^-}{V_1^+}$ as well as the return loss at port 1.

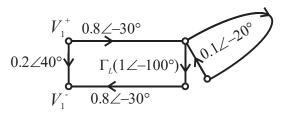


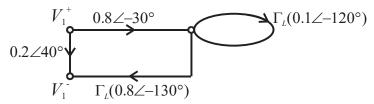
a) From earlier problem, the S-matrix for a lossless matched TL w/ electrical length $\beta\ell$ is


$$[S_{\text{TL}}] = \begin{bmatrix} 0 & e^{-j\beta\ell} \\ e^{-j\beta\ell} & 0 \end{bmatrix} = \begin{bmatrix} 0 & e^{-j50(\pi/180)} \\ e^{-j50(\pi/180)} & 0 \end{bmatrix} \Rightarrow$$

$$[S_{\text{TL}}] = \begin{bmatrix} 0 & 0.643 - j0.766 \\ 0.643 - j0.766 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1\angle -50^{\circ} \\ 1\angle -50^{\circ} & 0 \end{bmatrix}$$

b) Per Fig 4.14, we can get the SFG for two-port devices in terms of the S-parameters as


Per Fig 4.14a, we can get the SFG for a one-port device (load). Then, we get for our three devices-


c) Step 1 Use series rule on the three branches on the right to get

$$V_1^+ 0.8 \angle -30^{\circ}$$
 $0.2 \angle 40^{\circ}$
 $0.8 \angle -30^{\circ}$
 $0.1 \angle -20^{\circ}$
 $\Gamma_L(1 \angle -100^{\circ})$

Step 3 Split the bottom right node to create a self loop

Step 4 Use series rule on the self loop and the bottom two branches to get

Step 5 Use self loop rule to get

$$V_{1}^{+} \xrightarrow{\begin{array}{c} 0.8 \angle -30^{\circ} \\ \hline 1 - \Gamma_{L}(0.1 \angle -120^{\circ}) \end{array}}$$

$$0.2 \angle 40^{\circ} \xrightarrow{\phantom{\begin{array}{c} 0.8 \angle -30^{\circ} \\ \hline 1 - \Gamma_{L}(0.8 \angle -130^{\circ}) \end{array}}}$$

Step 6 Use series rule on the right two branches to get

$$0.2 \angle 40^{\circ} \underbrace{\frac{\Gamma_{l}(0.64 \angle -160^{\circ})}{1 - \Gamma_{L}(0.1 \angle -120^{\circ})}}_{V_{1}}$$

By parallel rule we get
$$V_1^- = \left[0.2 \angle 40^\circ + \frac{\Gamma_L(0.64 \angle -160^\circ)}{1 - \Gamma_L(0.1 \angle -120^\circ)} \right] V_1^+ \implies$$

$$\Gamma_1 = \frac{V_1^-}{V_1^+} = 0.2 \angle 40^\circ + \frac{\Gamma_L(0.64 \angle -160^\circ)}{1 - \Gamma_L(0.1 \angle -120^\circ)}$$

The return loss (2.38) is RL = -20 log $|\Gamma_1|$

$$\Rightarrow RL = -20\log \left| 0.2\angle 40^{\circ} + \frac{\Gamma_{L}(0.64\angle -160^{\circ})}{1 - \Gamma_{L}(0.1\angle -120^{\circ})} \right| (dB)$$