4.14 A four-port network has the scattering matrix shown as follows. (a) Is this network lossless? (b) Is this network reciprocal? (c) What is the return loss at port 1 when all other ports are terminated with matched loads? (d) What is the insertion loss and phase delay between ports 2 and 4 when all other ports are terminated with matched loads? (e) What is the reflection coefficient seen at port 1 if a short circuit is placed at the terminal plane of port 3 and all other ports are terminated with matched loads?

$$[S] = \begin{bmatrix} 0.24 \angle 90^{\circ} & 0.5 \angle 45^{\circ} & 0.6 \angle 45^{\circ} & 0 \\ 0.5 \angle 45^{\circ} & 0 & 0 & 0.2 \angle -45^{\circ} \\ 0.6 \angle 45^{\circ} & 0 & 0 & 0.6 \angle -45^{\circ} \\ 0 & 0.2 \angle -45^{\circ} & 0.6 \angle -45^{\circ} & 0 \end{bmatrix}$$

a) Per (4.51), $[S]^{t}[S]^{*}=[U]$ for a lossless network.

$$\begin{bmatrix} 0.24\angle 90^{\circ} & 0.5\angle 45^{\circ} & 0.6\angle 45^{\circ} & 0 \\ 0.5\angle 45^{\circ} & 0 & 0 & 0.2\angle -45^{\circ} \\ 0.6\angle 45^{\circ} & 0 & 0 & 0.6\angle -45^{\circ} \\ 0 & 0.2\angle -45^{\circ} & 0.6\angle -45^{\circ} & 0 \end{bmatrix} \begin{bmatrix} 0.24\angle -90^{\circ} & 0.5\angle -45^{\circ} & 0.6\angle -45^{\circ} & 0 \\ 0.5\angle -45^{\circ} & 0 & 0 & 0.2\angle 45^{\circ} \\ 0.6\angle -45^{\circ} & 0 & 0 & 0.6\angle 45^{\circ} \\ 0 & 0.2\angle 45^{\circ} & 0.6\angle 45^{\circ} & 0 \end{bmatrix} = [U]?$$

Check to see if first element of matrix multiplication is equal to 1-

$$(0.24\angle 90^{\circ})(0.24\angle -90^{\circ}) + (0.5\angle 45^{\circ})(0.5\angle -45^{\circ}) + (0.6\angle 45^{\circ})(0.6\angle -45^{\circ}) + 0(0) = 1$$
?
 $0.24^{2} + 0.5^{2} + 0.6^{2} = 0.6676 \neq 1 \implies \text{[S] is NOT a lossless network]}.$

b) To be reciprocal, $[S] = [S]^{t}$ (4.48).

$$\begin{bmatrix} 0.24\angle 90^{\circ} & 0.5\angle 45^{\circ} & 0.6\angle 45^{\circ} & 0 \\ 0.5\angle 45^{\circ} & 0 & 0 & 0.2\angle -45^{\circ} \\ 0.6\angle 45^{\circ} & 0 & 0 & 0.6\angle -45^{\circ} \\ 0 & 0.2\angle -45^{\circ} & 0.6\angle -45^{\circ} & 0 \end{bmatrix} = \begin{bmatrix} 0.24\angle 90^{\circ} & 0.5\angle 45^{\circ} & 0.6\angle 45^{\circ} & 0 \\ 0.5\angle 45^{\circ} & 0 & 0 & 0.2\angle -45^{\circ} \\ 0.6\angle 45^{\circ} & 0 & 0 & 0.6\angle -45^{\circ} \\ 0 & 0.2\angle -45^{\circ} & 0.6\angle -45^{\circ} & 0 \end{bmatrix}?$$

 \Rightarrow [S] is a reciprocal network.

c) Per (2.38), RL = -20 log $|\Gamma|$ (dB). When ports 2-4 are matched, $S_{11} = \Gamma_1 = 0.24 \angle 90^\circ$ (page 179).

$$RL_1 = -20 \log |S_{11}| = -20 \log 0.24 \implies RL_1 = 12.396 \text{ dB}$$
.

d) Per (4.40), $[V^-] = [S][V^+]$. The statement that ports 1 & 3 are terminated in matched loads $\Rightarrow V_1^+ = V_3^+ = 0$.

d) cont.

$$\begin{bmatrix} V_1^- \\ V_2^- \\ V_3^- \\ V_4^- \end{bmatrix} = \begin{bmatrix} 0.24 \angle 90^\circ & 0.5 \angle 45^\circ & 0.6 \angle 45^\circ & 0 \\ 0.5 \angle 45^\circ & 0 & 0 & 0.2 \angle -45^\circ \\ 0.6 \angle 45^\circ & 0 & 0 & 0.6 \angle -45^\circ \\ 0 & 0.2 \angle -45^\circ & 0.6 \angle -45^\circ & 0 \end{bmatrix} \begin{bmatrix} V_1^+ = 0 \\ V_2^+ \\ V_3^+ = 0 \\ V_4^+ \end{bmatrix}$$

Compute
$$V_2^- = 0.5 \angle 45^{\circ}(0) + 0(V_2^+) + 0(0) + 0.2 \angle -45^{\circ}(V_4^+) = 0.2 \angle -45^{\circ}(V_4^+)$$
.

The transmission coefficient from port 4 to port 2 is $T_{24} = \frac{V_2^-}{V_4^+} = 0.2 \angle -45^\circ$.

Use (2.52) IL =
$$-20 \log |T|$$
 (dB) to get IL₂₄ = $-20 \log 0.2$ \Rightarrow IL₂₄ = 13.979 dB

Put the equation for V_2^- in polar/phasor format

$$|V_{2}^{-}| \angle \theta_{2}^{-} = (0.2 \angle -45^{\circ}) (|V_{4}^{+}| \angle \theta_{4}^{+}) = 0.2 |V_{4}^{+}| \angle (-45^{\circ} + \theta_{4}^{+}).$$

Equating the phase angles gives $\theta_2^- = -45^\circ + \theta_4^+$

Phase delay₂₄ = -45 $^{\circ}$

e) The statement that ports 2 & 4 are terminated in matched loads $\Rightarrow V_2^+ = V_4^+ = 0$. The statement that port 3 is short-circuited implies $\Gamma_3 = \frac{V_3^-}{V_2^+} = -1 \Rightarrow V_3^+ = -V_3^-$.

Now, $(4.40) [V^{-}] = [S][V^{+}]$ becomes

$$\begin{bmatrix} V_1^- \\ V_2^- \\ V_3^- \\ V_4^- \end{bmatrix} = \begin{bmatrix} 0.24 \angle 90^\circ & 0.5 \angle 45^\circ & 0.6 \angle 45^\circ & 0 \\ 0.5 \angle 45^\circ & 0 & 0 & 0.2 \angle -45^\circ \\ 0.6 \angle 45^\circ & 0 & 0 & 0.6 \angle -45^\circ \\ 0 & 0.2 \angle -45^\circ & 0.6 \angle -45^\circ & 0 \end{bmatrix} \begin{bmatrix} V_1^+ \\ 0 \\ -V_3^- \\ 0 \end{bmatrix}$$

Compute $V_1^- = (0.24 \angle 90^\circ) V_1^+ + (0.5 \angle 45^\circ) (0) + (0.6 \angle 45^\circ) (-V_3^-) + 0(0)$. This simplifies to equation (1) $V_1^- = (0.24 \angle 90^\circ) V_1^+ - (0.6 \angle 45^\circ) V_3^-$.

Compute
$$V_3^- = (0.6 \angle 45^\circ)V_1^+ + 0(0) + 0(-V_3^-) + (0.6 \angle 45^\circ)0$$
.

Next, substitute $V_3^- = (0.6 \angle 45^\circ)V_1^+$ into equation (1) to get

$$V_1^- = (0.24 \angle 90^\circ)V_1^+ - (0.6 \angle 45^\circ)[(0.6 \angle 45^\circ)V_1^+] = [(0.24 \angle 90^\circ) - (0.6 \angle 45^\circ)(0.6 \angle 45^\circ)]V_1^+$$

$$V_1^- = (0.12 \angle -90^\circ)V_1^+$$

By definition,
$$\Gamma_1 = \frac{V_1^-}{V_1^+} = \frac{(0.12 \angle -90^\circ) V_1^+}{V_1^+}$$
. Solving, we get $\Rightarrow \Gamma_1 = 0.12 \angle -90^\circ$.