4.4 A two-port network is driven at both ports such that the port voltages and current have the following values ($Z_0 = 75 \Omega$):

$$V_1 = 15 \angle 90^{\circ} \text{ V}, I_1 = 0.2 \angle 90^{\circ} \text{ A},$$

 $V_2 = 12 \angle 0^{\circ} \text{ V}, I_2 = 0.16 \angle -90^{\circ} \text{ A}$

Determine the input impedance seen at each port, and find the incident and reflected voltages at each port.

Port 1

Using Ohm's Law, the input impedance
$$Z_{\text{in,1}} = \frac{V_1}{I_1} = \frac{15 \angle 90^{\circ}}{0.2 \angle 90^{\circ}}$$
 $\Rightarrow Z_{\text{in,1}} = 75 \Omega$

Port 2

Using Ohm's Law, the input impedance
$$Z_{\text{in,2}} = \frac{V_2}{I_2} = \frac{12\angle 0^{\circ}}{0.16\angle -90^{\circ}}$$
 \Rightarrow $Z_{\text{in,2}} = j75 \Omega$.

Per (2.14a) & (2.14b),
$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z}$$
 & $I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z}$ respectively.

At z = 0, these yield $V(0) = V_0^+ + V_0^- \& I(0) = \frac{V_0^+}{Z_0} - \frac{V_0^-}{Z_0}$. Solving these two equations for the incident and reflected voltage waves yields

$$V_0^+ = 0.5[V(0) + I(0)Z_0]$$
 and $V_0^- = 0.5[V(0) - I(0)Z_0]$.

Port 1

Let $V_1 = V(0)$ and $I_1 = I(0)$ and solve for the incident and reflected voltage waves

$$V_1^+ = 0.5[(15\angle 90^\circ) + (0.2\angle 90^\circ)75]$$
 $\Rightarrow V_1^+ = 15\angle 90^\circ V$

and
$$V_1^- = 0.5[(15\angle 90^\circ) - (0.2\angle 90^\circ)75]$$
 $\Rightarrow V_1^- = 0$.

Port 2

Let $V_2 = V(0)$ and $I_2 = I(0)$ and solve for the incident and reflected voltage waves

$$V_2^+ = 0.5[(12\angle 0^\circ) + (0.16\angle -90^\circ)75]$$
 $\Rightarrow V_2^+ = 8.4853\angle -45^\circ V$

and
$$V_2^- = 0.5[(12\angle 90^\circ) - (0.16\angle -90^\circ)75]$$
 $\Rightarrow V_2^- = 8.4853\angle 45^\circ V$