A lossless transmission line (50 Ω , 2.4 × 10⁸ m/s) of length 15 cm has a measured input impedance of 18 + $j32 \Omega$ at 2 GHz. Using a Smith chart, find: a) input reflection coefficient, b) input admittance, c) load reflection coefficient, d) SWR, e) return loss, and f) load impedance.

Calculate wavelength to be $\lambda = v_p / f = 2.4 \times 10^8 / 2 \times 10^9 \implies \lambda = 0.12 \text{ m} = 12 \text{ cm}.$

Normalize and plot input impedance

- $> z_{\text{in}} = Z_{\text{in}}/Z_0 = (18+j32)/50 \implies z_{\text{in}} = 0.36+j0.64 \Omega/\Omega.$
- Plot z_{in} on Smith chart by finding intersection of r = 0.36 circle with x = 0.64 arc.

a) Find input reflection coefficient

- Set compass to distance between center of Smith chart and z_{in} . Use compass to mark the "RFL COEFF, E or I" scale below Smith chart on left side to determine $|\Gamma_{in}| = 0.6$.
- ▶ Use a straight edge to draw radial line from center of Smith chart through $z_{\rm in}$ and outer rings of Smith chart. Use the "ANGLE OF REFLECTION COEFFICIENT IN DEGREES" scale to read $\angle \Gamma_{\rm in} = 110^{\circ}$.
- ▶ Put magnitude and angle together to get $\Rightarrow \Gamma_{in} = 0.6 \angle 110^{\circ}$.

b) Find input admittance

- \triangleright Set compass to distance between center of Smith chart and z_{in} . Use compass and draw circle centered on Smith chart.
- \triangleright Use a straight edge to extend radial line from center of Smith chart through z_{in} to other side of Smith chart.
- Read normalized input admittance at intersection of circle and radial line at 180° opposite to z_{in} as $y_{in} = 0.67 j 1.19$ S/S.
- Find input admittance by dividing y_{in} by Z_0 . $Y_{in} = y_{in}/Z_0 = (0.67 j 1.19 \text{ S/S})/50 \Omega$ $\Rightarrow \underline{Y_{in}} = 13.4 - j 23.8 \text{ mS}.$

c) Find load reflection coefficient

- Calculate $\ell/\lambda = 15 / 12 = 1.25$. Subtract 2(0.5) = 1 (i.e., remove integer multiples of $n\lambda/2$) to get $\Rightarrow \ell/\lambda = 0.25$. A complete circle on a Smith Chart is 0.5λ So, Γ_L is 180° around the circle of constant $|\Gamma| = 0.6$ from the $z_{\rm in}$ & $\Gamma_{\rm in}$ point, i.e., at same location as $y_{\rm in}$!
- ▶ Use the "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_L = -70^\circ$ and note $|\Gamma_L| = |\Gamma_{\rm in}| = 0.6$.
- ➤ Put magnitude and angle together to get $\Rightarrow \Gamma_L = 0.6 \angle -70^{\circ}$.

d) Find SWR

► Use compass to draw $|\Gamma| = 0.6$ arc, centered on Smith chart scales, through 'SWR' scale below Smith chart on left side. Read \Rightarrow SWR = 4.

e) Find return loss

► Use compass to draw $|\Gamma| = 0.6$ arc, centered on Smith chart scales, through 'RTN LOSS (dB)' scale below Smith chart on left side. Read \Rightarrow RL = 4.4 dB.

f) Find load impedance

- At Γ_L (also y_{in}) point, read-off the normalized load resistance $r_L = 0.67$ and load reactance $x_L = -1.19$, giving $z_L = 0.67 j 1.19 \Omega/\Omega$.
- Find load impedance by multiplying z_L with Z_0 to get $Z_L = Z_0 z_L = 50(0.67 j 1.19)$

 \Rightarrow $Z_L = 33.5 - j 59.5 \Omega$.

Bonus:

For comparison, the exact values are-

 $\Gamma_{\text{in}} = 0.6022 \angle 109.8^{\circ}$

 $Y_{\rm in} = 13.35 - j 23.74 \text{ mS}$

 $\Gamma_L = 0.6022 \angle -70.2^{\circ}$

SWR = 4.027

RL = 4.406 dB

 $Z_L = 33.38 - j 59.35 \Omega$

