- 2.23 A slotted-line experiment is performed with the following results: distance between successive minima = 2.1 cm; distance of first voltage minimum from load = 0.9 cm; SWR of load = 3. If $Z_0 = 50 \Omega$, find the load impedance.
 - ➤ Using 'SWR (VSWR)' at below Smith chart on left, set compass to SWR = 3.
 - ➤ Draw a circle, centered on the Smith chart. This circle represents all possible impedances on the transmission line.
 - As everything repeats every $\lambda/2$ on a Smith chart, the distance between voltage minima = $\lambda/2 = 2.1$ cm $\Rightarrow \lambda = 4.2$ cm.
 - \triangleright Voltage minima occur at r_{min} , i.e., where the circle intersects the real axis to the left of center. Mark this location on Smith chart.
 - The distance from the closest voltage minima to the load in terms of wavelengths is $\ell_{min} / \lambda = 0.9 / 4.2 \implies \ell_{min} / \lambda = 0.2143$.
 - ➤ Draw radial line from center of Smith chart to 0.2143 on the 'WAVELENGTHS TOWARD LOAD' scale.
 - Move $\ell_{\min} / \lambda = 0.2143$ in the 'WAVELENGTHS TOWARD LOAD' direction from the r_{\min} point to the location of z_L on the circle of constant SWR = 3.
 - \triangleright Read-off the normalized load resistance $r_L = 2.15$ and reactance $x_L = -1.25$. This yields $z_L = 2.15 j 1.25 \Omega/\Omega$.
 - \triangleright Find load impedance by multiplying z_L with Z_0 to get

$$Z_L = Z_0 z_L = 50 \ (2.15 - j \ 1.25)$$
 $\Rightarrow \underline{Z_L = 107.5 - j \ 62.5 \ \Omega}.$

