- **2.20** Use the Smith chart to find the following quantities for the transmission line circuit shown in the accompanying figure:
 - (a) The SWR on the line.
 - (b) The reflection coefficient at the load.
 - (c) The load admittance.
 - (d) The input impedance of the line.
 - (e) The distance from the load to the first voltage minimum.
 - (f) The distance from the load to the first voltage maximum.

Normalize and plot load impedance

- $ightharpoonup z_L = Z_L/Z_0 = (40 j70)/50 \implies z_L = 0.8 j \cdot 1.4 \Omega/\Omega.$
- Plot z_L on Smith chart by finding intersection of r = 0.8 circle with x = -1.4 arc.

a) Find SWR

- \triangleright Use compass to draw $|\Gamma|$ circle centered on Smith chart through z_L .
- Then, go to 'SWR (VSWR)' scale below Smith chart on left side and make mark using compass. Read \Rightarrow SWR = 4.25.

b) Find load reflection coefficient

- ➤ Use compass to mark the "RFL COEFF, E or I" scale below Smith chart on right side to determine $|\Gamma_L| = 0.62$.
- ▶ Use a straight edge to draw radial line from center of Smith chart through z_L and outer rings of Smith chart. Use the "ANGLE OF REFLECTION COEFFICIENT IN DEGREES" scale to read $\angle \Gamma_L = -60.2^\circ$.
- ➤ Put magnitude and angle together to get $\Rightarrow \Gamma_L = 0.62 \angle -60.2^\circ$.

c) Find load admittance

- \triangleright Use a straight edge to extend radial line from center of Smith chart through z_L to other side of Smith chart.
- Read normalized input admittance at intersection of $|\Gamma|$ circle and radial line at 180° opposite to z_L as $y_L = 0.31 + j 0.54$ S/S.
- Find input admittance by dividing y_L by Z_0 . $Y_L = y_L / Z_0 = (0.31 + j \ 0.54 \ S/S) / 50 \ \Omega$

$$\Rightarrow Y_L = 6.2 + j \cdot 10.8 \text{ mS}.$$

d) Find input impedance

- Move $\ell/\lambda = 0.4$ on circle of constant $|\Gamma|$ from z_L point at 0.166λ on 'WAVELENGTHS TOWARD LOAD' scale to 0.234λ on 'WAVELENGTHS TOWARD GENERATOR' scale $(0.166\lambda + 0.234\lambda = 0.4\lambda)$. Draw radial line from center to outer edge of Smith chart. Intersection of line and circle is z_{in} point.
- At $z_{\rm in}$ point, read-off the normalized input resistance $r_{\rm in} = 3.6$ and input reactance $x_{\rm in} = 1.5$, giving $z_{\rm in} = 3.6 + j \cdot 1.5 \cdot \Omega/\Omega$.
- Find input impedance by multiplying z_{in} with Z_0 to get $Z_{in} = Z_0 z_{in} = 50(3.6 + j 1.5)$

$$\Rightarrow \underline{Z_{in}} = 180 + j 75 \Omega$$
.

e) Find distance from load to V_{\min}

The z_L point is at 0.166λ on the 'WAVELENGTHS TOWARD LOAD' scale. If we move 0.166λ in the 'WAVELENGTHS TOWARD GENERATOR' direction, we arrive at the V_{\min} (and r_{\min}) point. $\Rightarrow \underline{d_{\min}} = 0.166 \lambda$.

f) Find distance from load to $V_{\rm max}$

The z_L point is at 0.166λ on the 'WAVELENGTHS TOWARD LOAD' scale. If we move 0.166λ + 0.25λ in the 'WAVELENGTHS TOWARD GENERATOR' direction, we arrive at the V_{max} (and r_{max}) point. $\Rightarrow d_{\text{max}} = 0.416 \lambda$.

Bonus:

For comparison, the exact values are-

SWR = 4.2656 $\Gamma_L = 0.6202 \angle -60.255^\circ$ $Y_L = 6.154 + j 10.769 \text{ mS}$ $\Gamma = 0.6022 \angle 109.8^\circ$ $Z_{\text{in}} = 180.744 + j 74.155 \Omega$ $d_{\text{min}} = 0.16631\lambda$ $d_{\text{max}} = 0.41631\lambda$

