Determine ε ', ε '', and the effective conductivity σ of nylon (610) at 3 GHz at 25°C. [Hint: Appendices E, F, & G.]

From Appendix G, $\varepsilon_r = 2.84$ and $\tan \delta = 0.012$ at 3 GHz for nylon (610).

 \triangleright Per notes, $\varepsilon' = \varepsilon_r \varepsilon_0 = 2.84 (8.8541878 \times 10^{-12} \text{ F/m})$

$$\Rightarrow$$
 $\underline{\varepsilon'} = 2.5146 \times 10^{-11} \text{ F/m}.$

 \triangleright Per notes, $\varepsilon'' = \varepsilon' \tan \delta = 2.5146 \times 10^{-11} (0.012)$

$$\Rightarrow \underline{\varepsilon"} = 3.0175 \times 10^{-13} \text{ F/m}.$$

 \triangleright Per notes, $\varepsilon'' = \sigma/\omega$. So, the effective conductivity is $\sigma = \omega \varepsilon''$.

$$\sigma = 2\pi (3 \times 10^9) \ 3.0175 \times 10^{-13}$$
 $\Rightarrow \underline{\sigma} = 0.0056879 \ \text{S/m} = 5.6879 \ \text{mS/m}.$