An RO3010 Rogers Corporation PCB datasheet gives that the relative permittivity is 11.2 and dissipation factor is 0.022 at 10 GHz at 23°C. Determine ε ', ε '', and the effective conductivity σ of this RO3010 PCB.

➤ Per notes,
$$\varepsilon' = \varepsilon_r \, \varepsilon_0 = 11.2 \, (8.8541878 \times 10^{-12} \, \text{F/m})$$

$$\Rightarrow \underline{\varepsilon'} = 9.9167 \times 10^{-11} \text{ F/m}.$$

- \triangleright 'dissipation factor' is another word for loss tangent \Rightarrow tan $\delta = 0.022$.
- \triangleright Per notes, $\varepsilon'' = \varepsilon' \tan \delta = 9.9167 \times 10^{-11} (0.022)$

$$\Rightarrow \underline{\varepsilon}$$
" = 2.1817×10⁻¹² F/m.

 \triangleright Per notes, $\varepsilon'' = \sigma/\omega$. So, the effective conductivity is $\sigma = \omega \varepsilon''$.

$$\sigma = 2\pi (10 \times 10^9) \ 2.1867 \times 10^{-12}$$
 $\Rightarrow \underline{\sigma} = 0.13708 \ \text{S/m}.$