
EE 481/581 Microwave Engineering (Fall 2025) Laboratory 6 Multiport Device Analysis- Part 1: CSI SDSM&T Report

Supported by the work in your logbook, complete this initial report on your findings. Your supervisor will expect results to be backed up by calculations, measurements, references, etcetera in the logbook.

Device 1

- 1) Device is a _____
- 2) The characteristic impedances of the ports (labeled 1, 2 & 3 on picture above) are:

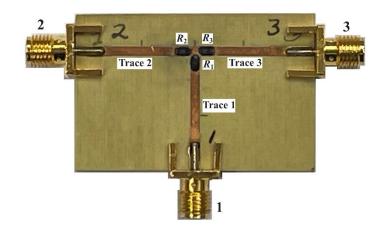
$$Z_1 =$$
, $Z_2 =$, & $Z_3 =$.

- 3) The Rogers Corporation RO4003C laminate thickness is d =_____.
- 4) On the picture above, what are the width W_x , length L_x , and characteristic impedances $Z_{0,x}$ of:

Trace 1:
$$W_1 =$$
______, $L_1 =$ ______, & $Z_{0,1} =$ _____.

Trace 2:
$$W_2 =$$
______, $L_2 =$ ______, & $Z_{0,2} =$ _____.

Trace 3:
$$W_3 =$$
______, $L_3 =$ ______, & $Z_{0,3} =$ ______.


Curved:
$$W_c =$$
______, $L_c =$ ______ per side, & $Z_{0,c} =$ ______.

- 5) Based on the device type and prior information, the suspected resistor value R =_____.
- 6) Expected center frequency f_c , low frequency f_{low} , and high frequency f_{high} of:

$$f_c =$$
______, $f_{low} =$ ______, and $f_{high} =$ ______ (enter **n/a** if not applicable)

- 7) Predicted [S]-matrix at f_c or a representative frequency: [S] =
- 8) Is the device lossless? Yes / No (circle)
- 9) Suggested test plan to confirm theories-

Device 2

- 1) Device is a
- 2) The characteristic impedances of the ports (labeled 1, 2 & 3 on picture above) are:

- 3) The Rogers Corporation RO4003C laminate thickness is d =_____.
- 4) On the picture above, what are the width W_x , length L_x , and characteristic impedances $Z_{0,x}$ of:

Trace 1:
$$W_1 =$$
______, $L_1 =$ ______, & $Z_{0,1} =$ _____.

Trace 2:
$$W_2 =$$
_______, $L_2 =$ ________, & $Z_{0,2} =$ _______.

Trace 3:
$$W_3 =$$
______, $L_3 =$ ______, & $Z_{0,3} =$ ______.

5) The expected theoretical resistor values are:

$$R_{1,\text{theory}} = \underline{\qquad}, R_{2,\text{theory}} = \underline{\qquad}, \text{ and } R_{3,\text{theory}} = \underline{\qquad}.$$

6) The measured resistor values are:

$$R_{1,\text{meas}} =$$
_______, $R_{2,\text{meas}} =$ _______, and $R_{3,\text{meas}} =$ _______.

7) Expected center frequency f_c , low frequency f_{low} , and high frequency f_{high} of:

$$f_c =$$
 ______, $f_{low} =$ _____, and $f_{high} =$ ______ (enter **n/a** if not applicable)

- 8) Predicted [S]-matrix at f_c or a representative frequency: [S] =
- 9) Is the device lossless? Yes / No (circle)
- 10) Suggested test plan to confirm theories