EE 481/581 Microwave Engineering (Fall 2025) ## Homework 5 ## Wednesday, October 8, 2025 - 1) A 3" × 1.2" brass ($\sigma = 2.5 \times 10^7$ S/m) rectangular waveguide is filled with ABS plastic ($\varepsilon_r = 2$, tan $\delta = 0.005$). In order, find the cutoff frequency of the: a) lowest four TE modes and b) lowest two TM modes. Neglect loss tangent. - 2) For a 3" × 1.2" brass ($\sigma = 2.5 \times 10^7$ S/m) rectangular waveguide filled with ABS plastic ($\varepsilon_r = 2$, tan $\delta = 0.005$) operating at 2 GHz in the TE₁₀ mode, find: a) k, b) k_c , c) β , d) λ_g , e) ν_p , and f) Z_{TE} . Neglect loss tangent. - 3) For a 3" × 1.2" brass ($\sigma = 2.5 \times 10^7$ S/m) rectangular waveguide filled with ABS plastic ($\varepsilon_r = 2$, tan $\delta = 0.005$), find the dielectric, conductor, and overall attenuation constants (Np/m and dB/m) for the TE₁₀ mode at 2 GHz. - 4) Design a 75 Ω stripline using a ground plane separation of 1.5 mm with an ABS dielectric (ε_r =2, $\tan \delta$ =0.005). Assume the ground planes and land are made with 2 oz. copper (ε_0 , μ_0 , σ =5.7 × 10⁸ S/m). Draw a fully-labeled sketch of the design. At 2 GHz, find: a) the phase velocity, b) guided wavelength, c) phase constant, d) dielectric attenuation constant (Np/m & dB/m), e) conductor attenuation constant (Np/m & dB/m), and f) overall attenuation constant (Np/m & dB/m). - 5) Design a 75 Ω microstrip TL using a 2 oz. copper clad (ε_0 , μ_0 , $\sigma = 5.7 \times 10^8$ S/m) ABS substrate ($\varepsilon_r = 2$, $\tan \delta = 0.005$) that is 0.75 mm thick for use at 2 GHz. Draw a full-labeled sketch of your design. Compute: a) the effective relative permittivity, b) phase velocity, c) phase constant, d) dielectric attenuation constant (Np/m & dB/m), e) conductor attenuation constant (Np/m & dB/m), and f) overall attenuation constant (Np/m & dB/m). - 6) **EE 581 only:** For a microstrip TL made using a 2 oz. copper clad $(\varepsilon_0, \mu_0, \sigma = 5.7 \times 10^8 \text{ S/m})$ ABS substrate $(\varepsilon_r = 2, \tan \delta = 0.005)$ that is 0.75 mm thick for use at 2 GHz, calculate the threshold frequencies. Is the operating frequency of 2 GHz lower than these threshold frequencies? Due Wednesday, October 15, 2025.