Microwave Engineering (Fourth Edition), Pozar, Wiley, 2012, ISBN 978-0-470-63155-3.

TABLE 2.1 Transmission Line Parameters for Some Common Lines

	COAX	TWO-WIRE D a	PARALLEL PLATE W
L	$\frac{\mu}{2\pi} \ln \frac{b}{a}$	$\frac{\mu}{\pi} \cosh^{-1} \left(\frac{D}{2a} \right)$	$\frac{\mu d}{w}$
C	$\frac{2\pi\epsilon'}{\ln b/a}$	$\frac{\pi\epsilon'}{\cosh^{-1}(D/2a)}$	$rac{\epsilon' w}{d} = rac{2R_S}{2}$
<i>R</i>	$\frac{R_s}{2\pi}\left(\frac{1}{a}+\frac{1}{b}\right)$	$\frac{R_s}{\pi a}$	$\frac{2R_s}{w}$
G	$\frac{2\pi\omega\epsilon''}{\ln b/a}$	$\frac{\pi\omega\epsilon''}{\cosh^{-1}\left(D/2a\right)}$	$\frac{\omega\epsilon''w}{d}$

Notes:

1)
$$R_s = \frac{1}{\sigma \delta_s}$$
 where $\delta_s = \sqrt{\frac{2}{\omega \mu \sigma}}$

- 2) All material parameters for *R* have to do with conductors.
- 3) All material parameters for *L*, *C*, & *G* have to do with media surrounding conductors.

Elements of Electromagnetics (Sixth Edition), Sadiku, Oxford, 2015, ISBN 978-0-19-932138-4.

Parameters	Coaxial Line	Two-Wire Line	Planar Line
R (Ω/m)	$\frac{1}{2\pi\delta\sigma_c}\left[\frac{1}{a} + \frac{1}{b}\right]$ $(\delta \ll a, c - b)$	$\frac{1}{\pi a \delta \sigma_c}$ $(\delta \ll a)$	$\frac{2}{w\delta\sigma_c}$ $(\delta \ll t)$
<i>L</i> (H/m)	$\frac{\mu}{2\pi}\ln\frac{b}{a}$	$\frac{\mu}{\pi} \cosh^{-1} \frac{d}{2a}$	$\frac{\mu d}{w}$
G (S/m)	$\frac{2\pi\sigma}{\ln\frac{b}{a}}$	$\frac{\pi\sigma}{\cosh^{-1}\frac{d}{2a}}$	$\frac{\sigma w}{d}$
C (F/m)	$\frac{2\pi\varepsilon}{\ln\frac{b}{a}}$	$\frac{\pi\varepsilon}{\cosh^{-1}\frac{d}{2a}}$	$\frac{\varepsilon w}{d}$ $(w \gg d)$

TABLE 11.1 Distributed Line Parameters at High Frequencies*

*
$$\delta = \frac{1}{\sqrt{\pi f \mu_c \sigma_c}} = \text{skin depth of the conductor; } \cosh^{-1} \frac{d}{2a} \simeq \ln \frac{d}{a} \text{ if } \left[\frac{d}{2a} \right]^2 \gg 1.$$

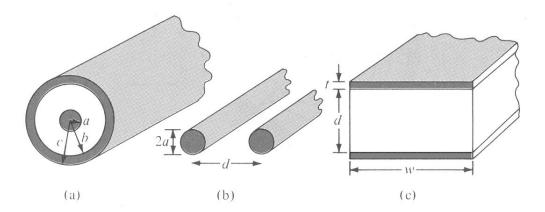


Figure 11.2 Common transmission lines: (a) coaxial line, (b) two-wire line, (c) planar line.

Notes:

- 1) All material parameters for *R* have to do with conductors.
- 2) All material parameters for *L*, *C*, & *G* have to do with media surrounding conductors.
- 3) For the **dielectric**, we are using an effective σ that encompasses both conductive and electric dipole losses and assuming ϵ is real.