

For the lossless transmission line circuit above, the frequency, length, and phase velocity will be left unspecified while $Z_0 = 75 \Omega$ and $Z_L = 56.25 - j75 \Omega$.

1) Normalize and plot load impedance

- → Normalize $z_L = Z_L / Z_0 = (56.25 j75) / 75 \implies z_L = 0.75 j 1 Ω/Ω$.
- ▶ Plot z_L on Smith charts by finding the intersection of the r = 0.75 circle with the x = -1 arc.

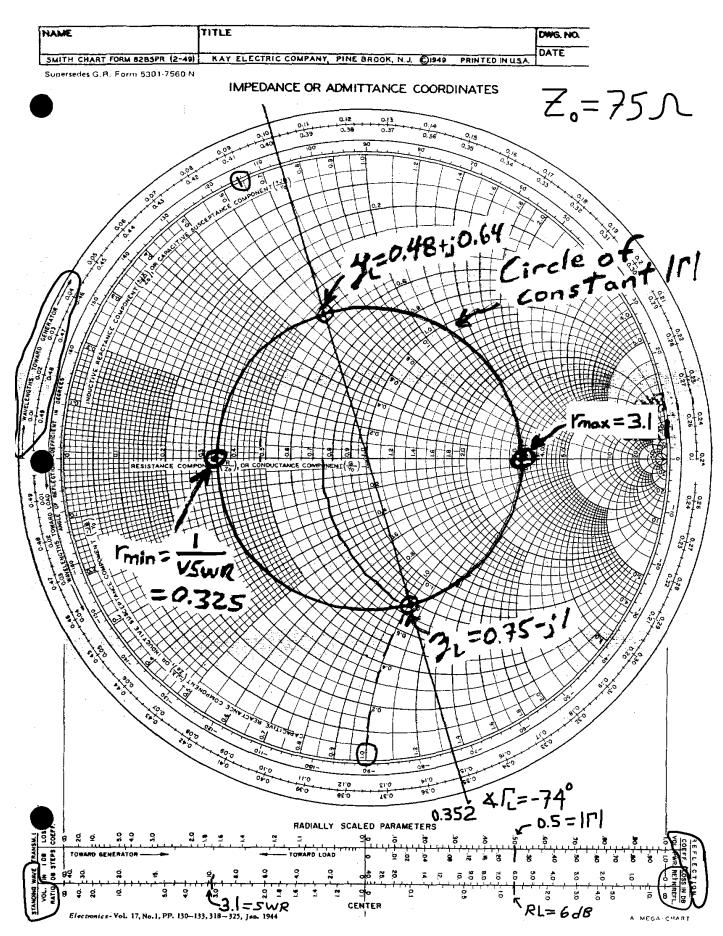
2) Find load reflection coefficient, RL, and VSWR (method 1)

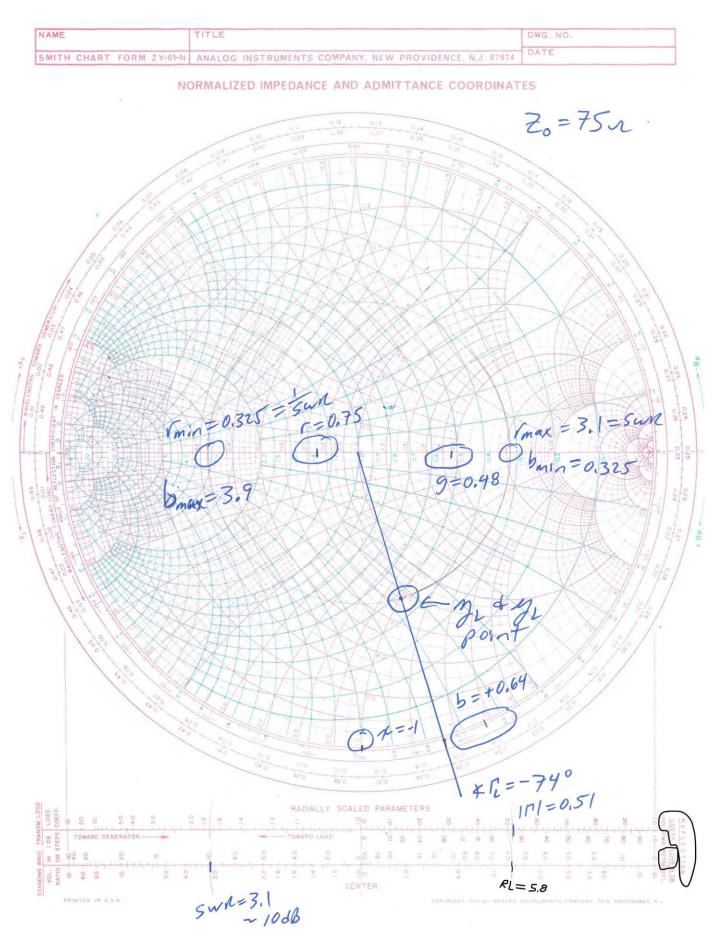
- Set compass to distance between center of Smith charts and z_L . Use "REFL. COEFF. V or I" scale at bottom right to determine $|\Gamma_L| = 0.5$ or 0.51.
- → Use straight-edge to draw radial line from center of Smith chart through z_L and outer rings of Smith charts. Use "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_L = -74^\circ$.
- ▶ Put magnitude and angle together to get $\underline{\Gamma_L} = 0.5 \angle -74^\circ$ or $\underline{0.51} \angle -74^\circ$. For comparison, the analytic result is $\Gamma_L = 0.5114 \angle -74.29^\circ$.
- → Use compass to draw $|\Gamma| = 0.5$ arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left. Read <u>VSWR = 3.1</u>.
- → Use compass to draw $|\Gamma| = 0.5$ arc, centered on Smith chart scales, through RETN LOSS scale on bottom right. Read <u>**RL**</u> = 6 dB or <u>5.8 dB</u>.

3) Find VSWR (method 2)

- > Draw a circle, centered on Smith charts, through z_L .
- ► Read value of normalized resistance *r* where the $|\Gamma| = 0.5$ circle crosses the horizontal/real axis to the right of the origin to get <u>*r*max</u> = **VSWR** = **3.1**.

4) Find load admittance


- → Use straight-edge to draw line from edge-to-edge of Smith charts through center of Smith charts and z_L point.
- → Where the line intersects the $|\Gamma| = 0.5$ circle on the side opposite to z_L , locate and read/interpolate value of appropriate "g" circle as $g_L = 0.48$.
- → Where the line intersects the $|\Gamma| = 0.5$ circle on the side opposite to z_L , locate and read/interpolate value of appropriate "b" arc as <u> $b_L = 0.64$ </u>.
- > Put together to get <u>normalized</u> load admittance $y_L = 0.48 + j0.64$ S/S.
- Find load admittance by dividing y_L by characteristic impedance Z_0 to get $Y_L = y_L/Z_0 = (0.48 + j 0.64)/75 \implies \underline{Y_L} = 0.0064 + j 0.0083 \text{ S} = 6.4 + j 8.3 \text{ mS}.$


5) Find/locate voltage and impedance maxima

- ► Impedance maxima occur where the $|\Gamma| = 0.5$ circle crosses the real axis to the right of origin. Read/interpolate "*r*" circles to get <u>*r*max</u> = 3.1.
- → The maximum impedance along the transmission line is found by multiplying r_{max} w/ Z_0 to get $Z_{\text{max}} = Z_0 z_{\text{max}} = 75(3.1) \implies Z_{\text{max}} = 232.5 \Omega$.
- ► Voltage maxima along the transmission line occur at r_{max} . Starting where the radial line through z_L crosses the "WAVELENGTHS TOWARD GENERATOR" scale at 0.352, move toward the generator to the real axis to the right of origin (r_{max} location) where the scale reads 0.25. The total distance is (0.5-0.352) λ + 0.25 λ = 0.398 λ .
- As everything repeats at $\lambda/2$ intervals on lossless TLs, the voltage maxima locations in <u>distance from the load</u> are $\underline{I_{\text{max}} = 0.398\lambda + n\lambda/2}$.

5) Find/locate voltage and impedance minima

- ► Impedance minima occurs where the $|\Gamma| = 0.5$ circle crosses the real axis to the left of origin. Read/interpolate "*r*" circles to get <u>*r*min = 0.325</u>.
- → The minimum impedance along the transmission line is found by multiplying r_{\min} w/ Z_0 to get $Z_{\min} = Z_0 z_{\min} = 75(0.325) \implies Z_{\min} = 24.375 \Omega$.
- ► Voltage minima along the transmission line occur at r_{min} . Starting where the radial line through z_L crosses the "WAVELENGTHS TOWARD GENERATOR" scale at 0.352, move toward the generator to the real axis to the left of origin (r_{min} location) where the scale reads 0.5. The total distance is (0.5-0.352) $\lambda = 0.148\lambda$.
- > As everything repeats at $\lambda/2$ intervals, the voltage minima locations in <u>distance from the load</u> are <u> $I_{min} = 0.148\lambda + n\lambda/2$ </u>.

