

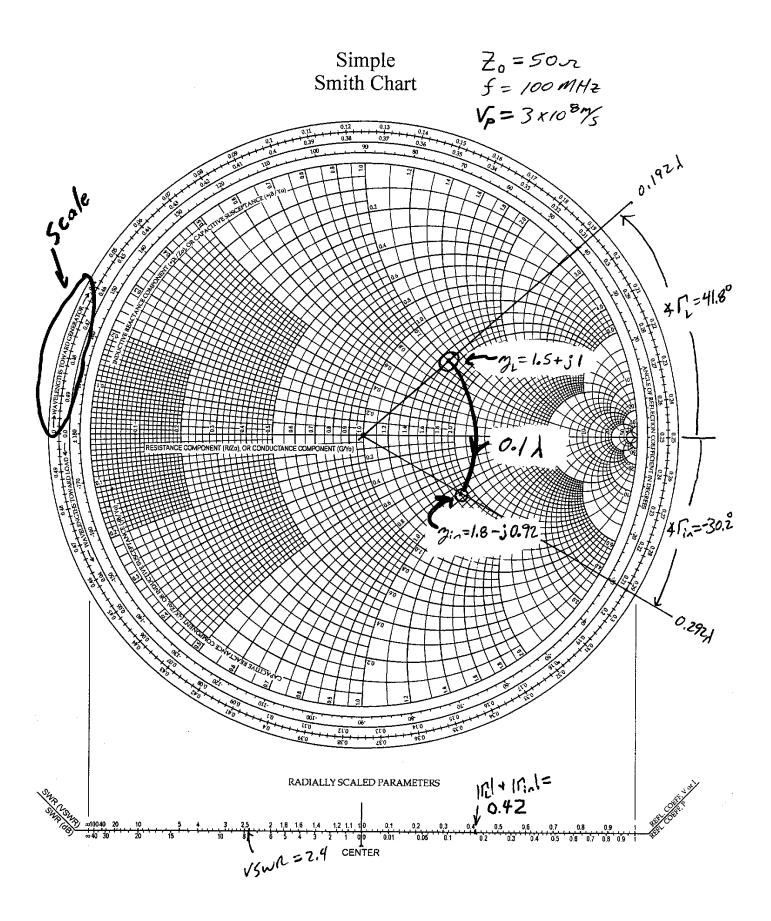
For the lossless transmission line circuit shown: $f = 100 \,\text{MHz}$, $v_p = 3 \times 10^8 \,\text{m/s}$, $l = 3.3 \,\text{m}$, $Z_0 = 50 \,\Omega$, and $Z_L = 75 + j \,50 \,\Omega$.

1) Normalize and plot load impedance

- ► Normalize $z_L = Z_L / Z_0 = (75 + j50) / 50 \implies z_L = 1.5 + j1 \Omega / \Omega$.
- \triangleright Plot z_L on Smith chart by finding intersection of r = 1.5 circle with x = 1 arc.

2) Find load reflection coefficient and VSWR

- Set compass to distance between center of Smith chart and z_L . Use compass to mark the "REFL. COEFF. V or I" scale at bottom right of Smith chart to determine $|\Gamma_L| = 0.42$.
- ➤ Use compass to draw $|\Gamma| = 0.42$ arc, centered on Smith chart scales, through SWR (VSWR) scale on bottom left. Read <u>VSWR = 2.4</u>.
- ▶ Use straight-edge to draw radial line from center of Smith chart through z_L and outer rings of Smith chart. Use "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read \angle Γ_L = 41.8°.
- ➤ Put magnitude and angle together to get $\underline{\Gamma_L} = 0.42 \angle 41.8^{\circ}$. For comparison, the analytic result is $\Gamma_L = 0.4152 \angle 41.63^{\circ}$.


3) Find input reflection coefficient

- ightharpoonup Calculate $l/\lambda = lf/v_p = 3.3 \, (100 \times 10^6)/3 \times 10^8 = 1.1$. Subtract 2(0.5) = 1 (i.e., remove integer multiples of $n\lambda/2$) to get $\Rightarrow l/\lambda = 0.1$.
- ➤ On the Smith chart, the radial line through z_L reads 0.192 on the "WAVELENGTHS TOWARD GENERATOR" scale. Add 0.192 + l/λ to get 0.292 and draw a radial line from the center of the Smith chart through this point on the scale.

- ➤ Draw an arc, centered on Smith chart, from z_L through radial line at 0.292. The intersection of the arc and radial line is the $\Gamma_{\rm in}$ / $z_{\rm in}$ point. Use the "ANGLE OF REFLECTION COEFFCIENT IN DEGREES" scale to read $\angle \Gamma_{in} = -30.2^{\circ}$ and note $|\Gamma_{\rm in}| = |\Gamma_L| = 0.42$.
- ▶ Put magnitude and angle together to get $\Gamma_{in} = 0.42 \angle -30.2^{\circ}$.

4) Find input impedance

- At $\Gamma_{\text{in}} = 0.42 \angle -30.2^{\circ}$ point, locate and read/interpolate value of appropriate "r" circle as $\underline{r}_{\text{in}} = 1.8$.
- At $\Gamma_{\text{in}} = 0.42 \angle -30.2^{\circ}$ point, locate and read/interpolate value of appropriate "x" arc as $\underline{x_{\text{in}}} = -0.92$.
- \triangleright Put together to get <u>normalized</u> input impedance $\underline{z}_{in} = 1.8 j \cdot 0.92 \Omega/\Omega$.
- Find input impedance by multiplying z_{in} w/ characteristic impedance to get $Z_{in} = Z_0 z_{in} = 50(1.8 j 0.92) \implies \underline{Z_{in}} = 90 j 46 \Omega$.

