EE 382 Applied EM Quiz #8 (Spring 2018)

Name <u>KEY A</u>

Instructions: Closed book. Circle correct answers.

- 1) The radiation intensity $U(\theta, \phi)$ is defined as: a) $\frac{1}{2} \operatorname{Re}\left\{\overline{E} \times \overline{H}^*\right\} (W/m^2)$, **b**) $r^2 \mathcal{P}_{ave}(W/sr)$, c) $\frac{P_{rad}}{P_{in}}$, d) $\frac{\lambda^2}{4\pi} D(\theta, \phi)$ (m²), or e) how long it takes to heat a burrito to 120° in a microwave.
- 2) The time-average Poynting vector (AKA: power density) is defined as: **a**) $\frac{1}{2} \operatorname{Re}\left\{\overline{E} \times \overline{H}^*\right\}$ (W/m²),

b)
$$r^2 \mathcal{P}_{ave}$$
 (W/sr), c) $\frac{P_{rad}}{P_{in}}$, d) $\frac{\lambda^2}{4\pi} D(\theta, \phi)$ (m²), or e) the direction of a compass needle.

- 4) The scattering cross section (AKA radar cross section): a) is the maximum cross-sectional area of a target, b) is used to characterize how a target reflects EM radiation, c) is the width of a radiation pattern, or d) describes how children disperse on the playground at recess.
- 5) For the radiation pattern shown below, identify the main lobe(s), side lobe(s), and back lobe(s).

EE 382 Applied EM Quiz #8 (Spring 2018)

Name <u>KEY B</u>

Instructions: Closed book. Circle correct answers.

- 1) The radiation intensity $U(\theta, \phi)$ is defined as: a) $\frac{\lambda^2}{4\pi} D(\theta, \phi)$ (m²), **b**) $r^2 \mathcal{P}_{ave}$ (W/sr), c) $\frac{P_{rad}}{P_{in}} \times 100\%$, d) $\frac{1}{2} \operatorname{Re} \{ \overline{E} \times \overline{H}^* \}$ (W/m²), or e) how long it takes to make popcorn in a microwave.
- 2) The time-average Poynting vector (AKA: power density) is defined as: a) $\frac{\lambda^2}{4\pi} D(\theta, \phi)$ (m²), b) $r^2 \mathcal{P}_{ave}$ (W/sr), c) the direction of a compass needle, **d**) $\frac{1}{2} \operatorname{Re}\left\{\overline{E} \times \overline{H}^*\right\}$ (W/m²), or e) $\frac{P_{rad}}{P_{in}} \times 100\%$.
- 3) The Friis transmission formula is: **a**) $P_r = G_{dt}G_{dr}\left[\frac{\lambda}{4\pi R}\right]^2 P_t$, b) a secret cipher used by the illuminati, c) $P_r = \frac{G_{dt}G_{dr}}{4\pi}\left[\frac{\lambda}{4\pi R_1R_2}\right]^2 \sigma P_t$, or d) a proprietary transmission oil additive.
- 4) The scattering cross section (AKA radar cross section): a) is the maximum cross-sectional area of a target, b) describes how children disperse on the playground at recess, c) is the width of a radiation pattern, or d) is used to characterize how a target reflects EM radiation.
- 5) For the radiation pattern shown below, identify the main lobe(s), side lobe(s), and back lobe(s).

