LE 382 Applied EM Quiz \#5 (Spring 2018)
Name Key A
Instructions: Closed book. Place answers in indicated spaces and show all work for credit.
Equations: $\Gamma_{x}=\frac{Z_{x}-Z_{0}}{Z_{x}+Z_{0}}, S W R=\frac{1+|\Gamma|}{1-|\Gamma|}, \quad Z_{\text {in }}(z)=Z_{0} \frac{1+\Gamma(z)}{1-\Gamma(z)}$, distance $=$ velocity \times time,$V=I R$
For the transmission line circuit shown, calculate the load reflection coefficient Γ_{L} and generator reflection coefficient Γ_{g}, one-way transit time T, and initial \& steady-state current \& voltage at $z=0$. Then, draw a voltage bounce diagram for $0 \leq t \leq 3 T$, and sketch $V(0, t)$ for $0 \leq t \leq 3 T$. Given: $V_{g}(t)=50 u(t) \vee, R_{g}=50 \Omega$, $Z_{0}=75 \Omega, R_{L}=175 \Omega, u=1.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and $l=250 \mathrm{~m}$.

$$
\Gamma_{L}=\frac{z_{L}-z_{0}}{z_{L}+z_{0}}=\frac{175-75}{175+75}=0.4 ; \Gamma_{S}=\frac{z_{9}-z_{0}}{z_{9}+z_{0}}=\frac{50-75}{50+75}=-0.2
$$

$$
T=l / u=\frac{250}{1.25 \times 100^{8}}=2 \times 10^{-6}=2 \mu 5
$$

$$
\text { Initial }=\frac{V_{s}}{V_{9}+z_{0}}=\frac{50}{50+75}=0.4 \mathrm{~A} \quad V_{\text {initial }}=V_{g} \frac{z_{0}}{z_{0}+H_{g}}=\frac{50(75)}{50+75}=30 \mathrm{~V}
$$

$$
I_{S S}=\frac{V_{S}}{R_{B}+n_{L}}=\frac{S 0}{S 0+175}=0.22 \mathrm{~A} \quad V_{S S}=V_{S} \frac{R_{L}}{Z_{0}+n_{L}}=\frac{50(175)}{50+175}=38 . \overline{8} \mathrm{~V}
$$

$$
0 \leq t<4 \mathrm{~ms} \quad V(0, t)=V_{\text {antral }}=30 \mathrm{~V} \quad 4 \mu s \leq t<B_{\mu s} \quad V(0, t)=30+12-2.4=39,6 \mathrm{~V}
$$

\qquad minimal current $=0.4 \mathrm{~A}$ Initial voltage $=30 \mathrm{~V} \quad$ S.S. current $=0 . \overline{22} \mathrm{~A}$ S.S. current $=0 . \overline{22} \mathrm{~A} \quad$ S.S. voltage $=38 . \overline{8} \mathrm{~V}$.

EL 382 Applied EM Quiz \#5 (Spring 2018)
Name \qquad Key B
Instructions: Closed book. Place answers in indicated spaces and show all work for credit.
Equations: $\Gamma_{x}=\frac{Z_{x}-Z_{0}}{Z_{x}+Z_{0}}, \quad S W R=\frac{1+|\Gamma|}{1-|\Gamma|}, \quad Z_{\text {in }}(z)=Z_{0} \frac{1+\Gamma(z)}{1-\Gamma(z)}$, distance $=$ velocity \times time, $V=I R$
For the transmission line circuit shown, calculate the load reflection coefficient Γ_{L} and generator reflection coefficient Γ_{g}, one-way transit time T, and initial $\&$ steady-state current $\&$ voltage at $z=0$. Then, draw a voltage bounce diagram for $0 \leq t \leq 3 T$, and sketch $V(0, t)$ for $0 \leq t \leq 3 T$. Given: $V_{g}(t)=60 u(t) \mathrm{V}, R_{g}=25 \Omega$, $Z_{0}=75 \Omega, R_{L}=300 \Omega, u=1.75 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and $l=525 \mathrm{~m}$.

$$
T=l / u=\frac{525}{1.75 \times 10^{8}}=3 \times 10^{-6}=3 \mu 5
$$

Initial $=\frac{V_{g}}{n_{g}+z_{0}}=\frac{60}{25+75}=0.6 \mathrm{~A} ; V_{\text {initial }}=V_{g} \frac{z_{0}}{z_{0}+R_{5}}=\frac{60(75)}{25+75}=45 \mathrm{~V}$

$$
\begin{aligned}
& I_{S S}=\frac{V_{S}}{R_{g}+R_{L}}=\frac{60}{2 S+300}=0.184615 \mathrm{~A} ; V_{S S}=V_{S} \frac{R_{L}}{R_{S}+L_{L}}=\frac{60(300)}{2 S+300}=55.3846 \mathrm{~V} \\
& 0<t<6 \mu_{s}=V(0, t)=V_{1_{1}} t_{10} 1=45 \mathrm{~V} \quad 6 \leqslant t<12 \mu \mathrm{~V}(0, t)=45+27-13.5=58.5 \mathrm{~V}
\end{aligned}
$$

$\Gamma_{L}=0.6 \quad \Gamma_{8}=-0.5 \quad T=3 \mu 5 \quad$ Initial current $=0.6 \mathrm{~A}$
Initial voltage $=45 \mathrm{~V} \quad$ s.s. current $=\underline{0.1846 \mathrm{~A}} \quad$ s.S. voltage $=55.385 \mathrm{~V}$

