EE382 Applied EM Quiz \#3 (Spring 2018)

Name \qquad KEY B \qquad
Closed book, notes, and calculators. Show all work, including that on Smith Chart, for credit.
Consider a lossless transmission line circuit where $Z_{0}=100 \Omega, f=800 \mathrm{MHz}, u=2 \times 10^{8} \mathrm{~m} / \mathrm{s}, l=2.285 \lambda$, and $Z_{\mathrm{L}}=30+j 70 \Omega$. Using a Smith Chart, compass, \& straight-edge, find the load \& input reflection coefficients (i.e., $\Gamma_{L} \& \Gamma_{\mathrm{in}}(0)$), normalized input impedance $z_{\mathrm{in}}(0)$, input impedance $Z_{\mathrm{in}}(0)$, and VSWR. Clearly label all points/work on Smith chart. Express impedances in rectangular form and reflection

$>$ Normalize load impedance $z_{L}=Z_{L} / Z_{0}=(30+j 70) / 100 \Rightarrow z_{L}=\underline{\mathbf{0 . 3}+\boldsymbol{j 0 . 7}} \underline{\boldsymbol{\Omega} \boldsymbol{\Omega}}$.
$>$ Plot z_{L} on Smith Chart. Use straight-edge to draw line from center of Smith chart through z_{L} and 'ANGLE OF REFLECTION COEFFICIENT IN DEGREES' scale to get $\Rightarrow \underline{\angle \Gamma_{\underline{L}}}=106.7^{\circ}$.
$>$ Use compass \& scales at bottom of Smith Chart to get $\left|\Gamma_{\underline{L}}\right|=\mathbf{0 . 6 7} \& \underline{\text { VSWR }=\mathbf{5 . 0 5}}$.
$>$ Use compass to draw circle of $|\Gamma|=0.67$, centered on Smith chart, through z_{L}.
$>$ Move 0.285λ from z_{L} point on Smith chart toward the generator on circle of $|\Gamma|=0.67$. Mark and read $\Rightarrow z_{\text {in }}(0)=\underline{\mathbf{0 . 3 3}-\mathbf{j} \mathbf{0 . 8 0 5}} \underline{\Omega} \mathbf{\Omega}$.
$>$ Use straight-edge to draw line from center of Smith chart through $z_{\mathrm{in}}(0)$ and the 'ANGLE OF REFLECTION COEFFICIENT IN DEGREES' scale. Read the angle to be $\angle \Gamma_{\text {in }}=-98.5^{\circ}$.
$>$ Calculate $Z_{\text {in }}(0)=z_{\text {in }}(0) Z_{0}=(0.33-j 0.805) 100=\underline{\mathbf{3 3}-j 80.5} \underline{\underline{\Omega}}$.

For comparison, analytic results:

$$
\Gamma_{L}=0.6705 \angle 106.699^{\circ}, \Gamma_{\mathrm{in}}(0)=0.6705 \angle-98.501^{\circ}, Z_{\mathrm{in}}(0)=33.4064-j 80.4863 \Omega
$$

$$
\begin{aligned}
& \Gamma_{L}=\ldots 0.67 \angle 106.7^{\circ} \\
& \Gamma_{\text {in }}(0)= \underline{0.67 \angle-98.5^{\circ}} \quad z_{\text {in }}(0)=\underline{0.33-j 0.805} \underline{\Omega} \Omega \\
& Z_{\text {in }}(0)=\ldots \underline{33-j 80.5} \underline{\Omega} \quad \text { VSWR }=\underline{5.05}
\end{aligned}
$$

