EE382 Homework \#2

Assigned: Wed., Jan. 17, 2018
Due: Mon., Jan. 22, 2018
Total Points: 40
(1) Assuming that each conducting loop is not moving, sketch the proper direction for the induced current I in each of the four situations indicated below in which \boldsymbol{B} is increasing, decreasing or not varying (dc) with time.
[8 pts]

(2) Text Problem 9.1. Stated another way, if a small gap were introduced into the loop, what voltage would be present? Indicate the polarity of this voltage on your sketch of the problem.

$$
\text { (ans.: } V(t)=-0.474 \sin (377 t) \mathrm{V} \text {) }
$$

[7pts]
(3) Text Problem 9.3. Indicate polarity of the current on your sketch of the problem.

$$
\text { (ans.: } I(t)=-12.57 \cos \left(10^{4} t\right) \mathrm{A}
$$

[7 pts]
(4) A square loop with sides $10 \times 10 \mathrm{~cm}$ is located in free space adjacent to a long straight wire carrying a sinusoidal current of $\cos (\omega t)$. The amplitude is 3 A and the frequency is 4 kHz . Two sides of the loop are parallel to the wire and located at 5 cm and 15 cm from the conductor, respectively. There is also a small gap in the loop. What is the magnitude and polarity of the induced voltage across the gap?
(ans.: $V=1.659 \mathrm{mV}$)
[8 pts]
(5) An inductor is formed by tightly winding 500 turns of wire around a circular Teflon rod as shown in the figure, below. This inductor is immersed in
 a uniform magnetic flux density field,
$\boldsymbol{B}(\boldsymbol{t})=\mathbf{0 . 0 3} \cos \left(2 \boldsymbol{\pi} \cdot \mathbf{5} \times \mathbf{1 0}^{4} \cdot \boldsymbol{t}\right) \mathrm{Wb} / \mathrm{m}^{2}$ directed along the axis of the coil. Find the inductor voltage $V(t)$. Sketch $V(t)$ and $\boldsymbol{B}(t)$ on the same graph and qualitatively verify that Lenz's law is satisfied if, for example, a resistor was connected across the gap.
(ans.: $V(t)=1.48 \times 10^{3} \sin \left(2 \pi \cdot 5 \times 10^{4} \cdot t\right) V$
[10 pts]

