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Lecture 7: Sinusoidal Steady State, Phasors. 
 
In some of our studies of time varying electromagnetic fields, 
we will be considering sinusoidal steady state signals. 
 
In this case, the use of phasors greatly simplifies the analysis 
since in Maxwell’s equations 

 j
t





 

assuming an j te   time dependence. In particular, we usually 
assume a  cos t  time dependence by default. 

 

 
What is a Phasor? 

 
To answer this question, imagine we have a sinusoidally varying 
function of time 
    0 cosf t f t    

By Euler’s identity 
 cos sinjxe x j x   

then 

    
0Re j tf t f e       

or 

   
0

0Re j j t

F

f t f e e 
 
 
  
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The quantity 0F  in this last expression is what is called a 
phasor. That is, the phasor 0F  is a very simple and compact 

method of representing the: 
 amplitude, and 
 phase angle (i.e., time delay with respect to the source) of 

the function  f t . 

These two properties are all that is needed to represent in a 
shorthand notation, of sorts, the time variation of a function in a 
linear, time invariant system that has sinusoidal steady state 
excitation. 
 
In electromagnetics, our functions are generally vectors as well 
as phasors. Additionally, these “vector phasors” are functions 
of space. Because of this, analyzing such problems can be 
complicated. 
 

 
Example N7.1: Determine the vector phasor representation of  
    0ˆ, cosxB y t a B t y    

 

   
0 0

vector phasor

ˆ ˆ, Re Rej t y j y j t
x xB y t a B e a B e e    

 
        

  

  0ˆ j y
xB y a B e   , 

 
which is the vector phasor representation of  ,B y t . 
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Example N7.2: Determine the phasor representation for 
Faraday’s law 

 
B

E
t


  


 

 
Assuming a  cos t  time response, then   Re j tE t Ee      and 

  Re j tB t Be     . In these two expressions, E  and B  in the Re 

operators are vector phasors. 
 
Substituting these into Faraday’s law gives 

 Re Rej t j tEe Be
t

         
 

 
But, the Re operator commutes with the differentiation operator. 
Therefore, 

    Re 0j t j tE e Be
t

      
 

or  
phasor

Re 0j tE j B e 
 
   
 
 


 

Consequently, the phasor representation of Faraday’s law is 
 E j B    
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Maxwell’s Equations in Phasor Form 
 
Applying the result of this last example, we can easily write 
Maxwell’s equations in phasor form as 

E j B      vD     

H j D J     0B   

and the continuity equation 

vJ j     

 

 
Complex Numbers Aren’t Necessarily Phasors 

 
Finally, note that a phasor is generally a complex number, but 
not every complex number is a phasor! For example, in circuit 
analysis: 
 

Phasors Not phasors 
V P 
I Q (reactive power)

 ZC 
 ZL 
 H (transfer fct.) 

 L 
 C 
 R 

 



Whites, EE 382 Lecture 7 Page 5 of 5  

Similarly, in electromagnetics: 
 

Phasors Not phasors 

E  P 

D  S  (Poynting vector) 

B  
H  

v  
J   

 
Remember that a phasor is a shorthand representation for a 
function that has the following two time domain properties: 

1. sinusoidal time dependence, 
2. zero time average value. 


