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Lecture 4: Faraday’s Law and 
Moving Circuits. 

 
In the previous two lectures, we’ve been investigating Faraday’s 
law, which is written as 

 
   c s s c

d
E dl B ds

dt
      (1) 

As discussed in text Section 9.3, however, there is an alternate 
form of (1) that is sometimes used when the circuit moves 
through space. This is especially true if B  is also a function of 
time. 
 
Consider the circuit shown below: 

v

 B t

 
This loop is traveling with velocity v  (relative to the frame 
defining B ) in a time-varying B field,  B t . 
 
The emf measured by a high-impedance voltmeter connected to 
this circuit is given in (1). Charges in the wire are induced to 
move under the influence of a force given by the Lorentz force 
equation 
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  F q E v B    (2) 

 

 
Motional and Transformer EMF 

 
However, for an observer traveling with the loop, there is no 
apparent velocity. Instead, this observer would observe a force 
F   due only to an apparent electric field E  
 F qE   (3) 

The two forces F  and F   must be equal, so that from (2) and (3) 
we find that 
 E E v B     (4) 
 
Now, let’s substitute (4) back into Faraday’s law (1). After 
considerable simplification we find that 

 
   

 
 c s s c c s

B
E dl ds v B dl

t

       
     (5) 

This is an alternate form to Faraday’s law (1). Notice that there 
is no magnetic flux in this form! 
 
Important points to note in (5): 
  

 c s

v B dl   is called the motional emf. The circuit 

defined by contour c is said to “cut” the B field lines, 
whether or not B is constant or changing with time. (Note 
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that it’s assumed here the shape of the circuit does not 
change with time.) 

 
 s c

B
ds

t


 

  is called the transformer emf. (Notice that 

the time derivative appears inside the integral.) There is no 
motion present in this term. 

 The same emf would be measured by a voltmeter whether it 
is moving with the circuit as in (5) or stationary as in (1) 
since 

 
   c s c s

F F
dl dl emf

q q


       

 
Either of these two equations (1) and (5) yield exactly the same 
emf. This property will be illustrated in the two examples shown 
next. However, one form may be preferred over another 
depending on the problem. 
 

 
Example N4.1: Determine the induced resistor voltage V in the 
rotating loop circuit shown below using the form of Faraday’s 
law given in (5). The loop is immersed in the field ˆy oB a B  [T]. 
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B B

ds

 
 
The direction of c was arbitrarily chosen as shown. From (5) 

 
 

 
 

 
 s c c s c s

B
emf ds v B dl v B dl

t


        

     

The first term in the RHS is zero because B  is not a function of 
time. 
 
We will consider contributions to  v B dl   from each of the 
four line segments that comprise the contour c: 
 AB :   0v   such that   0v B dl   . 

 BC :   v B dl   such that   0v B dl   . 

 DA :   v B dl   such that   0v B dl   . 

 CD :   ˆv a L  , therefore 

     ˆ ˆ ˆ ˆy o y ov B a L a B a a L B        

 
The cross product ˆ ˆya a   involves unit vectors from two 
different coordinate systems. A direct calculation approach 
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involves converting â  to the Cartesian coordinate system, 
then performing the cross product. That is, 

 ˆ ˆ ˆsin cosx ya a a      (6) 

such that 
    ˆ ˆ ˆ ˆ ˆsin siny x y za a a t a a t         

 
Another approach to this cross product calculation is more 
heuristic. The calculation of the cross product of unit vectors 
is aided by drawing a top-down sketch of the rotating loop: 

â

 ˆ ˆ ˆ siny za a a t   

  
Consequently, 

  ˆ sinz ov B a L B t     

Therefore, 

 
    

 

ˆ ˆsin

sin

z o z

dl

o

v B dl a L B t a dz

L B t dz

 

 


      

 
 

 
Continuing with the calculation of emf, then, 

  
 

 
0

sin
W

o
c s

emf v B dl L B t dz        

such that 
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  sinoemf LWB t    [V] (7) 

 
Next, draw the equivalent lumped-element circuit: 

R emfV(t)
-

+

I

c

 
By KVL: 
 0V emf            sinoV Lemf WB t      [V] 

 
We can interpret the results of the line integral of  v B dl   for 
each of the four segments in the context of which segments 
actually “cut” the B  field lines. Segments BC  and DA  are in 
motion, but since these segments do not “cut” the B  field lines, 
no emf is generated by their motion through B . Their motion is 
always parallel to the B  field lines. 
 
Conversely, the vertical section CD  is “cutting” the B  field 
lines as it rotates. Consequently, an emf is generated in this 
segment as it rotates through B . Note that for  = 0 and  = 
180º, this segment does not cut the B  field lines so no emf is 
generated near these angles. 
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Example N4.2: Repeat the previous example, but use the form 
of Faraday’s law in (1). 
 

From (1): m

s

d d
emf B ds

dt dt


      

As indicated in the figure on page 3, ˆds a drdz  . 

Consequently, 

  
0 0

ˆ ˆ
W L

y o

d
emf a a B drdz

dt      

 
Similar to the previous example problem, this inner product of 
unit vectors can be evaluated using (6), or the heuristic approach 
by making a quick sketch: 

â

 ˆ ˆ cosya a t  

 
Therefore, 

    c sos inooemf
d

WLB t
dt

WLB t     [V] 

which is the same answer as in (7) of the previous example, as 
expected. 
 
As shown in the previous example 

V emf   

Therefore 
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   sinoV WLe B tmf       [V] 

Once again, this is the same answer as in the previous example, 
as expected. 
 
Note that here in Example N4.2 we have solved for V without 
resorting to motional emf and/or transformer emf, in contrast to 
the previous Example N4.1 (where only motional emf was 
present). Instead, we have just applied Faraday’s law (1), which 
is always valid. 
 
Lastly, notice that when the loop is in the xz plane, m  is 
maximum, but 0V  ! Further, when the loop lies in the yz plane, 

0m   but V  is maximum! Very strange, what is happening? 
 
Recall that the emf is not equal to m  in Faraday’s law. Rather, 
it is equal to the negative time-rate-of-change of m . When the 
loop is in the xz plane: 

t

max, 0m
m t

 
 



 
while when the loop is in the yz plane: 
 

0, maxm
m t

 
 



 
 


