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Lecture 2: Faraday’s Law of Induction. 
Lenz’s Law. 

 
Last semester in EE 381 Electric and Magnetic Fields, you saw 
that in 
 Electrostatics: stationary charges produce E  (and D) 
 Magnetostatics: steady currents (charges in constant 

motion) produce B  (and H ). 
These are two distinct theories that were developed from two 
different experimentally derived laws: Coulomb’s law and 
Ampère’s force law. 
 
Now we are going to consider time-varying sources (charges 
and currents) and their associated electric and magnetic fields. 
While many of the concepts we’ve learned in statics will still 
apply, two new phenomenon we will observe are: 
 Time varying B  produces E , and 
 Time varying E  produces B !! 

 
The complete electro-magnetic theory uses Coloumb’s and 
Ampère’s laws as a subset and requires one more experimentally 
derived law called Faraday’s law of induction. 
 
We’ll introduce this law with the following thought experiment. 
You’ve seen in EE 381 that a steady current in a wire produces a 
B : 
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B
I

 
 
It may seem possible (by some type of “reciprocity”) that if we 
had a wire and a magnet, for example, that a current would be 
“induced” in the wire: 

 ?I

B

B

 
This doesn’t occur, however. If it did there would be a clear 
violation of conservation of energy. 
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What Faraday (ca. 1831) and Henry showed was that a time-
varying magnetic flux would produce (or “induce”) a current I 
in a closed loop! 

 B t

 I t

 
Mathematically, Faraday’s law states that 

 md
emf

dt


    [V] (1) 

where 
 

 c s

emf E dl   is the net “push” causing charges to move.  

 
 

m
s c

B ds    is the magnetic flux though the surface s. 

 
In words, Faraday’s law (1) states that the emf generated in a 
closed loop is equal to the negative time rate of change of the 
magnetic flux “linking” the loop. 
 
Substituting for the definitions of emf and m (1) yields an 
equivalent form of Faraday’s law of induction 
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   c s s c

d
E dl B ds

dt
      (2) 

 

 
Point Form of Faraday’s Law 

 
By applying Stokes’ theorem to (2), as done in the text in 
Section 9.3.A, we can derive the point form of Faraday’s law.  
 
Specifically, applying Stokes’ theorem to the left-hand side of 
(2) gives 
 

 
 

 c s s c

E dl E ds      

Substituting this result into (2) and combining terms gives 

 
 

0
s c

B
E ds

t

        (3) 

Since this result is valid for all s and c, then the integrand must 
vanish, leaving 

 
B

E
t


  


 (4) 

This is called the point form of Faraday’s law. 
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Lenz’s Law 
 
Why the minus sign in Faraday’s law? [For example, equations 
(1) and (2)?] Because of Lenz’s law. 
 
Lenz’s law states that the B  produced by an induced current 
(we’ll call this indB ) will be such that ind  ( ind

s

B ds  ) opposes 

the change in the m  (
s

B ds  ) that produced the induced 

current. 
 
If this weren’t the case, the B  field would grow indefinitely 
large even for the smallest induced current! Consider: 
 

 

induces produces
ind

induces produces
ind ind

induces produces
ind ind ind

etc.

m

m

m

I B

I B

I B



 

  

 



  



    

 

 
We can see here that the total B  (the sum ind ind indB B B    
in the right-hand side) is increasing without bound if the induced 
B  enhances the original B . 


