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Lecture 1: Magnetic Circuits. 
 
The first topic of this course is actually a continuation of 
magnetostatics from EE 381 last semester. This topic is 
magnetic circuit analysis and it’s a lumped-element method for 
solving certain types of magnetic field problems.  
 
Magnetic circuit analysis is not always applicable, but when it is 
it can greatly simplify the solution to magnetics problems. 
 
This process is similar to the simplification of electric circuits 
using R, L, and C lumped elements to represent the effects of 
actual devices with physical dimensions. 
 
To illustrate magnetic circuit analysis, consider the toroid: 

s
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This problem is similar to toroid problems you have encountered 
earlier in EE 381. There is one difference though; the turns of 
wire exist only over a portion of the toroid. 
 
However, with 0   it can be shown through other means 

that the B  field will largely stay within the toroid. Here we will 
ignore all such flux leakage effects. Then, by Ampère’s law 
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Employing symmetry, and using ˆdl a rd   
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We will assume that this toroid has a small cross section such 
that B is nearly uniform over the cross section. Therefore, 
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inside the toroid, and zero outside. 
 
Now, the magnetic flux is 
 m
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B ds BA      [Wb] (3) 

where 2A w  is the cross-sectional area. Therefore, with (2) in 
(3) 
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Equivalent Magnetic Circuit 

 
We now develop the equivalent magnetic circuit for this toroid 
using this last equation by defining 

 m
m

V 
R

 (5) 

where 
   [A t]mV NI  F  is the source. Called an mmf or 

“magnetomotive force” with units of Ampère-turns, 
 The reluctance of the core (units of H-1).  

 
l

A
R   [H-1] (6) 

    where 2l a  is the mean length (circumference). 
 
The equivalent magnetic circuit for the toroid can be drawn as 

 
 
There is a direct analogy between electrical and magnetic 
circuits. 
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Analogous quantities in electrical and magnetic circuit analysis. 
 

Electrical Circuits Magnetic Circuits 

conductivity (S/m)  permeability (H/m) 
emf (V) V mmf (A-t) Vm 

current (A) I magnetic flux (Wb) m 

resistance () 
A

l
R


  reluctance (H-1) 

A
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Ohm’s law IRV   –– RmmV   

KVL (around a loop)  
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jmj
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imV ,, R  

KCL (at a junction) 0
j

jI  –– 0, 
j

jm  

 

 
Example N1.1: Determine the magnetic flux through the air gap 
in the geometry shown below. The structure is assumed to have 
a square cross section of area 10-6 m2, a core with r = 1,000, 
and dimensions l1 = 1 cm, l3 = 3 cm, and l4 = 2 cm. 
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Notice that we can subdivide this circuit so there are only three 
nodes in this problem. These nodes are indicated by the dots in 
the left-hand figure. We, of course, could create other equivalent 
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circuits with more nodes, but that would just increase the 
complexity of the analysis without adding any other usefulness. 
 
So how do we solve such a problem? Can we use Ampère’s law 
 

c

H dl NI   

No, we cannot because there isn’t sufficient geometrical 
symmetry for us to solve for H  using Ampère’s law. 
 
The assumptions inherent in magnetic circuits allow us to find 
an approximate solution, however. A drawback to magnetic 
circuit analysis is that generally we can’t check our solutions 
with a simple analytical formula because there isn’t one. Usually 
our only recourse to check the accuracy of our magnetic circuit 
solutions is to use a computational magnetics tool, which can 
compute H  everywhere in space. 
 
A distinguishing characteristic of this particular example 
problem is the air gap. We’ll assume 
 The length of the gap is small with respect to the cross 

section, thus 
 No “flux fringing” effects: 
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No flux fringing

B

r = 
1000

Flux fringing

B

r = 
1000

 
 
Summary of assumptions: 

1. No “flux leakage”: B  remains entirely within the magnetic 
material and the small air gap. 

2. No “flux fringing”: B  remains vertical in the air gap in this 
problem. 

 
With no “flux fringing,” then the air gap can be modeled as 
another reluctance in series with 2R  and shown in the 
equivalent magnetic circuit above. 
 
Compute the four reluctances using (6): 
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The magnetic flux through the source coil is the mmf divided by 
the total reluctance seen by the source: 

  
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Using “flux division” (analogous to current division), then 
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A practical application of this problem could be to find B  in the 
air gap, for example. This can be determined from ,2m  and the 
no flux fringing and no flux leakage assumptions. 


